计算机辅助方法为诊断和预测脑疾病显示了附加的价值,因此可以支持临床护理和治疗计划中的决策。本章将洞悉方法的类型,其工作,输入数据(例如认知测试,成像和遗传数据)及其提供的输出类型。我们将专注于诊断的特定用例,即估计患者的当前“状况”,例如痴呆症的早期检测和诊断,对脑肿瘤的鉴别诊断以及中风的决策。关于预测,即对患者的未来“状况”的估计,我们将缩小用例,例如预测多发性硬化症中的疾病病程,并预测脑癌治疗后患者的结局。此外,根据这些用例,我们将评估当前的最新方法,并强调当前对这些方法进行基准测试的努力以及其中的开放科学的重要性。最后,我们评估了计算机辅助方法的当前临床影响,并讨论了增加临床影响所需的下一步。
translated by 谷歌翻译
机器学习方法利用多参数生物标志物,特别是基于神经影像动物,具有改善痴呆早期诊断的巨大潜力,并预测哪些个体存在发展痴呆的风险。对于机器学习领域的基准算法和痴呆症中的神经影像症,并评估他们在临床实践中使用的潜力和临床试验,七年的大挑战已经在过去十年中组织:Miriad,Alzheimer的疾病大数据梦,Caddementia,机器学习挑战,MCI神经影像动物,蝌蚪和预测分析竞争。基于两个挑战评估框架,我们分析了这些大挑战如何互相补充研究问题,数据集,验证方法,结果和影响。七个大挑战解决了与(临床前)痴呆症(临床)痴呆症的筛查,诊断,预测和监测有关的问题。临床问题,任务和性能指标几乎没有重叠。然而,这具有提供对广泛问题的洞察力的优势,它也会限制对挑战的结果的验证。通常,获胜算法执行严格的数据预处理并组合了广泛的输入特征。尽管最先进的表演,但临床上没有挑战评估的大部分方法。为了增加影响,未来的挑战可以更加关注统计分析,对其与高于阿尔茨海默病的临床问题,以及使用超越阿尔茨海默病神经影像疾病的临床问题,以及超越阿尔茨海默病的临床问题。鉴于过去十年中汲取的潜力和经验教训,我们在未来十年及其超越的机器学习和神经影像中的大挑战前景兴奋。
translated by 谷歌翻译
机器学习(ML)模型的开发不仅仅是软件开发的特殊情况(SD):ML模型即使没有以看似无法控制的方式直接人类互动,也可以获取属性并满足要求。但是,可以形式上描述基础过程。我们为ML定义了一个全面的SD流程模型,该模型涵盖了文献中描述的大多数任务和文物。除了生产必要的工件外,我们还专注于以规格的形式生成和验证拟合描述。我们强调即使在初步训练和测试后,即使在生命周期中进一步发展ML模型的重要性。因此,我们提供了各种交互点,具有标准SD过程,其中ML通常是封装的任务。此外,我们的SD过程模型允许将ML作为(元)优化问题提出。如果严格自动化,则可以用来实现自适应自主系统。最后,我们的SD流程模型具有时间的描述,可以推理ML开发过程中的进度。这可能会导致ML领域内形式方法的进一步应用。
translated by 谷歌翻译
在本文中,我们提出了一个新颖的对象级映射系统,该系统可以同时在动态场景中分段,跟踪和重建对象。它可以通过对深度输入的重建和类别级别的重建来进一步预测并完成其完整的几何形状,其目的是完成对象几何形状会导致更好的对象重建和跟踪准确性。对于每个传入的RGB-D帧,我们执行实例分割以检测对象并在检测和现有对象图之间构建数据关联。将为每个无与伦比的检测创建一个新的对象映射。对于每个匹配的对象,我们使用几何残差和差分渲染残留物共同优化其姿势和潜在的几何表示形式,并完成其形状之前和完成的几何形状。与使用传统的体积映射或学习形状的先验方法相比,我们的方法显示出更好的跟踪和重建性能。我们通过定量和定性测试合成和现实世界序列来评估其有效性。
translated by 谷歌翻译
在本文中,我们提出了一个紧密耦合的视觉惯性对象级多效性动态大满贯系统。即使在极其动态的场景中,它也可以为摄像机姿势,速度,IMU偏见并构建一个密集的3D重建对象级映射图。我们的系统可以通过稳健的传感器和对象跟踪,可以强牢固地跟踪和重建任意对象的几何形状,其语义和运动的几何形状,其语义和运动的几何形状,并通过逐步融合相关的颜色,深度,语义和前景对象概率概率。此外,当对象在视野视野外丢失或移动时,我们的系统可以在重新观察时可靠地恢复其姿势。我们通过定量和定性测试现实世界数据序列来证明我们方法的鲁棒性和准确性。
translated by 谷歌翻译
在这项工作中,我们提出了一个新颖的观点,以解决贴片正确性评估的问题:正确的贴片实现了“答案”对越野车行为提出的问题的变化。具体而言,我们将贴片正确性评估变成一个问题回答问题。为了解决这个问题,我们的直觉是,自然语言处理可以提供必要的表示和模型来评估错误(问题)和补丁(答案)之间的语义相关性。具体而言,我们认为是输入错误报告以及生成的补丁的自然语言描述。我们的方法,Quatrain,首先考虑了最先进的消息生成模型,以生成与每个生成的补丁相关的相关输入。然后,我们利用神经网络体系结构来学习错误报告和提交消息之间的语义相关性。针对三个错误数据集生成的9135个补丁的大数据集(缺陷4J,Bugs.s.s.jar和Bears)的实验表明,Quatrain可以在预测补丁的正确性时达到0.886的AUC,并在过滤62%的62%错误的补丁时召回93%正确的补丁。我们的实验结果进一步证明了投入质量对预测性能的影响。我们进一步执行实验,以强调该模型确实了解了错误报告与预测的代码更改描述之间的关系。最后,我们与先前的工作进行比较,并讨论我们方法的好处。
translated by 谷歌翻译
可以使用X射线自由电子激光器的强脉冲和短脉冲直接通过单次相干衍射成像直接观察到自由飞行中孤立的纳米样品的结构和动力学。广角散射图像甚至编码样品的三维形态信息,但是该信息的检索仍然是一个挑战。到目前为止,只有通过与高度约束模型拟合,需要对单镜头实现有效的三维形态重建,这需要有关可能的几何形状的先验知识。在这里,我们提出了一种更通用的成像方法。依赖于允许凸多面体描述的任何样品形态的模型,我们从单个银纳米颗粒中重建广角衍射模式。除了具有高对称性的已知结构动机外,我们还检索了以前无法访问的不完美形状和聚集物。我们的结果为单个纳米颗粒的真实3D结构确定以及最终的超快纳米级动力学的3D电影开辟了新的途径。
translated by 谷歌翻译
为了引导电子商务用户进行购买,营销人员依靠对用户何时退出而无需购买的预测。以前,此类预测是基于隐藏的马尔可夫模型(HMM),因为它们具有不同用户意图的潜在购物阶段建模的能力。在这项工作中,我们开发了持续时间依赖的隐藏马尔可夫模型。与传统的HMM相反,它明确地对潜在状态的持续时间进行了建模,从而使国家变得“粘性”。提出的模型在检测用户退出时优于先前的HMM:在不购买的100个用户退出中,它可以正确识别另外18个。这可以帮助营销人员更好地管理电子商务客户的在线行为。我们模型卓越性能的原因是持续时间依赖性,这使我们的模型能够恢复以扭曲时间感的特征的潜在状态。我们最终为此提供了理论上的解释,该解释基于“流”的概念。
translated by 谷歌翻译
声音是现实世界中最有用,最丰富的方式之一,同时可以通过可以放置在移动设备上的小型和便宜的传感器来感知不接触。尽管深度学习能够从多个感官输入中提取信息,但很少有声音控制和学习机器人动作。对于无监督的强化学习,预计代理人将积极地收集经验,并以一种自制的方式共同学习代表和政策。我们使用基于物理的声音模拟来构建逼真的机器人操作场景,并提出内在的好奇模块(ISCM)。 ISCM向加强学习者提供反馈,以学习强大的表示并奖励更有效的探索行为。我们在适应过程中对启用声音进行了启用的声音实验,并表明ISCM所学的表示形式优于仅视力基线的基本线和预训练的策略,可以在应用于下游任务时加速学习过程。
translated by 谷歌翻译
代表学习算法为讨论有关滋扰因素的输入数据的不变表示提供了机会。许多作者利用此类策略来学习公平表示,即删除有关敏感属性的信息的向量。这些方法很有吸引力,因为它们可以解释为最大程度地减少神经层的激活与敏感属性之间的相互信息。但是,这种方法的理论基础依赖于无限准确的对手的计算或最小化相互信息估计的变异上限。在本文中,我们提出了一种直接计算神经层和敏感属性之间相互信息的方法。我们采用随机激活的二进制神经网络,使我们可以将神经元视为随机变量。然后,我们能够在层和敏感属性之间计算(不绑定)相互信息,并在梯度下降期间使用此信息作为正则化因子。我们表明,该方法与公平表示学习中的艺术状态相比,与完全精确的神经网络相比,学习的表示形式显示出更高的不变性水平。
translated by 谷歌翻译