课堂表达学习是可解释的监督机器学习的分支,越来越重要。在描述逻辑中的类表达式学习的大多数现有方法是搜索算法或基于硬规则的。特别地,基于细化运营商的方法遭受可扩展性问题,因为它们依赖于启发式功能来探索每个学习问题的大搜索空间。我们提出了一系列新的方法,我们配合了合成方法。此系列的实例是从提供的示例中直接计算类表达式。因此,它们不受基于搜索方法的运行时限制,也不存在于基于硬规则的方法的缺乏灵活性。我们研究了这种新型方法的三个实例,该方法使用轻量级神经网络架构从积极的例子组合中综合类表达式。他们对四个基准数据集的评估结果表明,它们可以在平均水平上有效地合成相对于输入示例的高质量类表达。此外,与最先进的方法的比较Celoe和Eltl表明我们在大型本体中实现了更好的F措施。为了重现性目的,我们提供了我们的实施以及在HTTPS://github.com/conceptLengtlearner/nces的公共Github存储库中的预先训练模型
translated by 谷歌翻译
知识图中的节点是一个重要任务,例如,预测缺失类型的实体,预测哪些分子导致癌症,或预测哪种药物是有前途的治疗候选者。虽然黑匣子型号经常实现高预测性能,但它们只是hoc后和本地可解释的,并且不允许学习模型轻松丰富域知识。为此,已经提出了学习描述了来自正和否定示例的逻辑概念。然而,学习这种概念通常需要很长时间,最先进的方法为文字数据值提供有限的支持,尽管它们对于许多应用是至关重要的。在本文中,我们提出了Evolearner - 学习ALCQ(D)的进化方法,它是与合格基数限制(Q)和数据属性配对的补充(ALC)的定语语言和数据属性(D)。我们为初始群体贡献了一种新颖的初始化方法:从正示例开始(知识图中的节点),我们执行偏见随机散步并将它们转换为描述逻辑概念。此外,我们通过在决定分割数据的位置时,通过最大化信息增益来提高数据属性的支持。我们表明,我们的方法在结构化机器学习的基准框架SML - 台阶上显着优于现有技术。我们的消融研究证实,这是由于我们的新颖初始化方法和对数据属性的支持。
translated by 谷歌翻译
基于细化运算符的概念学习方法探索部分有序的解决方案空间来计算概念,这些空间用作个体的二进制分类模型。然而,这些方法探索的概念的数量可以很容易地增长到数百万的复杂学习问题。这通常会导致不切实际的运行时间。我们建议通过预测解决方案空间探索前的目标概念的长度来缓解这个问题。通过这些手段,我们可以在概念学习期间修剪搜索空间。为了实现这一目标,我们比较四个神经结构,并在四个基准上进行评估。我们的评估结果表明,经常性的神经网络架构在概念长度预测中表现最佳,宏F-MEARY从38%到92%。然后,我们扩展了eloe算法 - 学习ALC概念 - 我们的概念长度预测器。我们的扩展会产生算法剪辑。在我们的实验中,夹子比ALC的其他最先进的概念学习算法速度至少为7.5倍 - 包括Celoe - 并且在4个数据集中学习的3个概念的F-Peasure中实现了重大改进。为了重现性,我们在HTTPS://github.com/conceptlencthLearner/learnlencths中提供我们在公共Github存储库中的实现
translated by 谷歌翻译
知识图形嵌入研究主要集中在两个最小的规范部门代数,$ \ mathbb {r} $和$ \ mathbb {c} $。最近的结果表明,四元增值嵌入的三线性产品可以是解决链路预测的更有效手段。此外,基于真实嵌入的卷曲的模型通常会产生最先进的链路预测结果。在本文中,我们调查了一种卷积操作的组成,具有超量用乘法。我们提出了四个方法qmult,amult,convic和convo来解决链路预测问题。 Qmult和Omult可以被视为先前最先进方法的四元数和octonion扩展,包括Distmult和复杂。 Convic和Convo在Qmult和Omlult上建立在剩余学习框架的方式中包括卷积操作。我们在七个链路预测数据集中评估了我们的方法,包括WN18RR,FB15K-237和YAGO3-10。实验结果表明,随着知识图的规模和复杂性的增长,学习超复分价值的矢量表示的益处变得更加明显。 Convo优于MRR的FB15K-237上的最先进的方法,命中@ 1并点击@ 3,而Qmult,Omlult,Convic和Convo在所有度量标准中的Yago3-10上的最终倾斜的方式。结果还表明,通过预测平均可以进一步改善链路预测性能。为了培养可重复的研究,我们提供了开源的方法,包括培训和评估脚本以及佩戴型模型。
translated by 谷歌翻译
我们提出了一种新的抽样策略,称为Smart Active Sapling,以在生产线之外进行质量检查。根据主动学习的原则,机器学习模型决定将哪些样品发送到质量检查。一方面,由于较早发现质量违规行为,这可以最大程度地减少废料零件的产生。另一方面,质量检查成本降低了,以进行平稳运行。
translated by 谷歌翻译
一致性检查是一种过程挖掘技术,允许验证过程实例与给定模型的符合性。因此,该技术被预定在医学环境中用于将治疗案例与临床准则进行比较。但是,医学过程是高度可变,高度动态和复杂的。这使得难以在医疗领域中使用命令性一致性检查方法。研究表明,声明性方法可以更好地解决这些特征。但是,这些方法尚未获得实际接受。另一个挑战是对齐,通常不会从医学角度增加任何价值。因此,我们在案例研究中调查了HL7标准Arden语法对于宣言性,基于规则的符合度检查和使用手动建模的对齐方式的可用性。使用该方法,可以检查治疗案例的一致性,并为医疗指南的大部分地区创建有意义的对齐方式。
translated by 谷歌翻译
在本文中,我们考虑了分散的优化问题,在这些问题中,代理具有个人成本函数,以最大程度地减少受到子空间约束的约束,这些子空间约束需要整个网络的最小化器才能位于低维子空间中。这种约束的公式包括共识或单任务优化作为特殊情况,并允许更一般的任务相关性模型,例如多任务平滑度和耦合优化。为了应对沟通限制,我们提出并研究一种自适应分散策略,在该策略中,代理人在与邻居进行交流之前,使用差异随机量化器来压缩其估计。分析表明,在量化噪声的某些一般条件下,对于足够小的步长$ \ mu $,该策略在均方误差和平均比特率方面都是稳定的:通过减少$ \ mu $,可以将估计错误保持较小(按$ \ mu $)保持较小,而不会无限地增加比特率为$ \ mu \ rightarrow 0 $。模拟说明了理论发现和提议方法的有效性,表明可以实现分散学习,但仅需少量。
translated by 谷歌翻译
光学相干断层扫描(OCT)是微尺度的体积成像方式,已成为眼科临床标准。 OCT仪器图像通过栅格扫描整个视网膜上的聚焦光点,从而获取顺序的横截面图像以生成体积数据。收购期间的患者眼动作带来了独特的挑战:可能会发生非刚性,不连续的扭曲,从而导致数据和扭曲的地形测量差距。我们提出了一种新的失真模型和相应的全自动,无参考优化策略,用于在正交栅格扫描,视网膜OCT量中进行计算运动校正。使用新型的,域特异性的时空参数化,可以首次连续校正眼睛运动。时间正则化的参数估计提高了先前空间方法的鲁棒性和准确性。我们在单个映射中在3D中单独校正每个A-SCAN,包括OCT血管造影协议中使用的重复采集。专业的3D前向图像扭曲将中位运行时间降低到<9 s,足够快地供临床使用。我们对18名具有眼病理学的受试者进行了定量评估,并在微扫描过程中证明了准确的校正。横向校正仅受眼震颤的限制,而亚微米可重复性是轴向可重复性的(中位数为0.51 UM中位数),这比以前的工作有了显着改善。这允许评估局灶性视网膜病理学的纵向变化,作为疾病进展或治疗反应的标志,并承诺能够使多种新功能(例如Suppersmplempled/Super-Supersmpled/Super-Super-Super-Super-Spemply/Super-Supertolution Reponstruction and Ransition and Anallys in Dealitaligy Eye the Neurologation疾病中发生的病理眼运动分析。
translated by 谷歌翻译
统计形状建模旨在捕获给定种群中发生的解剖结构的形状变化。形状模型用于许多任务,例如形状重建和图像分割,但也可以塑造生成和分类。现有的形状先验需要训练示例之间的密集对应,或者缺乏鲁棒性和拓扑保证。我们提出了FlowSM,这是一种新型的形状建模方法,它可以学习形状变异性,而无需在训练实例之间密集的对应关系。它依赖于连续变形流的层次结构,该层次由神经网络参数化。我们的模型优于远端股骨和肝脏在提供表现力和稳健形状方面的最先进方法。我们表明,新兴的潜在表示通过将健康与病理形状分开来歧视。最终,我们从部分数据中证明了其对两个形状重建任务的有效性。我们的源代码公开可用(https://github.com/davecasp/flowssm)。
translated by 谷歌翻译
深度学习(DL)模型越来越多地为应用程序提供多种应用。不幸的是,这种普遍性也使它们成为提取攻击的有吸引力的目标,这些目标可以窃取目标DL模型的体系结构,参数和超参数。现有的提取攻击研究观察到不同DL模型和数据集的攻击成功水平不同,但其易感性背后的根本原因通常仍不清楚。确定此类根本原因弱点将有助于促进安全的DL系统,尽管这需要在各种情况下研究提取攻击,以确定跨攻击成功和DL特征的共同点。理解,实施和评估甚至单一攻击所需的绝大部分技术努力和时间都使探索现有的大量独特提取攻击方案是不可行的,当前框架通常设计用于仅针对特定攻击类型,数据集和数据集,以及硬件平台。在本文中,我们介绍捏:一个有效且自动化的提取攻击框架,能够在异质硬件平台上部署和评估多个DL模型和攻击。我们通过经验评估大量先前未开发的提取攻击情景以及次级攻击阶段来证明捏合的有效性。我们的主要发现表明,1)多个特征影响开采攻击成功跨越DL模型体系结构,数据集复杂性,硬件,攻击类型和2)部分成功的提取攻击显着增强了进一步的对抗攻击分期的成功。
translated by 谷歌翻译