The electrification of shared mobility has become popular across the globe. Many cities have their new shared e-mobility systems deployed, with continuously expanding coverage from central areas to the city edges. A key challenge in the operation of these systems is fleet rebalancing, i.e., how EVs should be repositioned to better satisfy future demand. This is particularly challenging in the context of expanding systems, because i) the range of the EVs is limited while charging time is typically long, which constrain the viable rebalancing operations; and ii) the EV stations in the system are dynamically changing, i.e., the legitimate targets for rebalancing operations can vary over time. We tackle these challenges by first investigating rich sets of data collected from a real-world shared e-mobility system for one year, analyzing the operation model, usage patterns and expansion dynamics of this new mobility mode. With the learned knowledge we design a high-fidelity simulator, which is able to abstract key operation details of EV sharing at fine granularity. Then we model the rebalancing task for shared e-mobility systems under continuous expansion as a Multi-Agent Reinforcement Learning (MARL) problem, which directly takes the range and charging properties of the EVs into account. We further propose a novel policy optimization approach with action cascading, which is able to cope with the expansion dynamics and solve the formulated MARL. We evaluate the proposed approach extensively, and experimental results show that our approach outperforms the state-of-the-art, offering significant performance gain in both satisfied demand and net revenue.
translated by 谷歌翻译
我们建议一个基于深入强化学习的经理工作框架,以解决旅行推销员问题(TSP)的艰难而又非平凡的变体,\ ie〜有时间窗口和拒绝(MTSPTWR)的多车辆TSP(MTSPTWR),在此之前无法服务的客户截止日期将受到拒绝。特别是,在拟议的框架中,经理代理人通过基于图形同构网络(GIN)的策略网络将客户分配给每辆车,从而将MTSPTWR分为子路由任务。工人代理人通过根据每辆车的旅行长度和拒绝率来最大程度地降低成本来解决子路由任务,然后将其最多的最大值送回经理代理以学习更好的任务。实验结果表明,所提出的框架在更高的解决方案质量和较短的计算时间方面优于强基础。更重要的是,训练有素的代理商还取得了竞争性能,以解决看不见的较大实例。
translated by 谷歌翻译
基于文本的人检索旨在根据文本描述找到查询人员。关键是学习视觉文本模式之间的常见潜在空间映射。为了实现这一目标,现有的作品采用细分来获得明确的跨模式对齐方式或利用注意力来探索显着对准。这些方法有两个缺点:1)标记交叉模式比对很耗时。 2)注意方法可以探索显着的跨模式对齐,但可能会忽略一些微妙而有价值的对。为了缓解这些问题,我们为基于文本的人检索引入了一个隐式视觉文本(IVT)框架。与以前的模型不同,IVT利用单个网络来学习两种模式的表示形式,这有助于视觉文本相互作用。为了探索细粒的对准,我们进一步提出了两个隐式语义比对范式:多级比对(MLA)和双向掩码建模(BMM)。 MLA模块在句子,短语和单词级别上探索了更精细的匹配,而BMM模块旨在挖掘视觉和文本模态之间的\ textbf {更多}语义对齐。进行了广泛的实验,以评估公共数据集中提出的IVT,即Cuhk-Pedes,RSTPREID和ICFG-PEDES。即使没有明确的身体部位对准,我们的方法仍然可以达到最先进的表现。代码可在以下网址获得:https://github.com/tencentyouturesearch/personretrieval-ivt。
translated by 谷歌翻译
提出了基于可见光通信(VLC)的人类和机器人的合作定位火焰。根据实验系统,我们证明它具有很高的精度和实时性能。
translated by 谷歌翻译
服务机器人安全有礼貌的机器人需要坚强地跟踪周围人,尤其是对于旅游指南机器人(TGR)。但是,由于以下原因,现有的多对象跟踪(MOT)或多人跟踪(MPT)方法不适用于TGR:1。缺乏相关的大型数据集;2.缺少适用的指标来评估跟踪器。在这项工作中,我们针对TGR的视觉感知任务,并介绍TGRDB数据集,TGRDB数据集是一种新颖的大型多人跟踪数据集,其中包含大约5.6小时的带注释视频和超过450个长期轨迹。此外,我们提出了一个更适合使用数据集评估跟踪器的指标。作为我们工作的一部分,我们提出了TGRMPT,这是一种新型的MPT系统,它结合了头部肩膀和全身的信息,并实现了最先进的性能。我们已经在https://github.com/wenwenzju/tgrmpt中发布了代码和数据集。
translated by 谷歌翻译
将计算机性能与人类进行比较的图灵测试是众所周知的,但是令人惊讶的是,没有广泛使用的测试可以比较单独相对于人类,单独的计算机或其他基线的人类计算机系统的表现更好。在这里,我们展示了如何使用均值之比作为效果大小的量度进行此类测试。然后,我们以三种方式演示了该测试的使用。首先,在对最近发表的79个实验结果的分析中,我们发现,令人惊讶的是,超过一半的研究发现性能下降,均值和中位数提高的比率均约为1个(完全没有改进),最大比率为1.36(改善36%)。其次,当100名人类程序员使用GPT-3生成软件时,我们是否会获得更高的性能提高比,这是一个较大的,最先进的AI系统。在这种情况下,我们发现速度提高比为1.27(增长27%)。最后,我们发现使用GPT-3的50名非编程者可以执行与人类程序员相比,而且额外付费且额外的任务。在这种情况下,非程序员和计算机都无法单独执行任务,因此这是人类计算机协同作用非常强烈的一个例子。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
我们提出了一种有效的神经邻域搜索(N2S),以解决取货和交付问题(PDPS)。具体而言,我们设计了强大的综合注意力,可以使香草自我注意力综合有关路线解决方案的各种特征。我们还利用了两个自定义的解码器,它们会自动学习执行拾取节点对的删除和重新插入以应对优先限制。此外,利用多样性增强方案以进一步改善性能。我们的N2是通用的,并且对两个规范PDP变体进行了广泛的实验表明,它可以在现有神经方法之间产生最新的结果。此外,它甚至超过了众所周知的LKH3求解器在更受限的PDP变体上。我们针对N2S的实施可在线获得。
translated by 谷歌翻译
组合来自多视图图像的信息对于提高自动化方法的疾病诊断方法的性能和鲁棒性至关重要。但是,由于多视图图像的非对齐特性,跨视图的构建相关性和数据融合在很大程度上仍然是一个开放的问题。在这项研究中,我们提出了输血,这是一种基于变压器的体系结构,可使用卷积层和强大的注意机制合并不同的多视图成像信息。特别是,针对丰富的跨视图上下文建模和语义依赖性挖掘,提出了发散的融合注意(DIFA)模块,以解决从不同图像视图中捕获未对齐数据之间的长期相关性的关键问题。我们进一步提出了多尺度注意(MSA),以收集多尺度特征表示的全局对应关系。我们评估了心脏MRI(M \&MS-2)挑战队列中多疾病,多视图\&多中心右心室分段的输血。输血表明了针对最先进方法的领先绩效,并为多视图成像集成的新观点打开了稳健的医学图像分割。
translated by 谷歌翻译
自上而下的实例分割框架与自下而上的框架相比,它在对象检测方面表现出了优越性。虽然它有效地解决了过度细分,但自上而下的实例分割却遭受了过度处理问题。然而,完整的分割掩模对于生物图像分析至关重要,因为它具有重要的形态特性,例如形状和体积。在本文中,我们提出了一个区域建议纠正(RPR)模块,以解决这个具有挑战性的分割问题。特别是,我们提供了一个渐进式皇家模块,以逐渐将邻居信息引入一系列ROI。 ROI功能被馈入专门的进料网络(FFN)以进行提案框回归。有了其他邻居信息,提出的RPR模块显示了区域建议位置的校正显着改善,因此与最先进的基线方法相比,在三个生物图像数据集上表现出有利的实例分割性能。实验结果表明,所提出的RPR模块在基于锚固的和无锚的自上而下实例分割方法中有效,这表明该方法可以应用于生物学图像的一般自上而下实例分割。代码可用。
translated by 谷歌翻译