从大规模嘈杂的面孔中学习强大的特征表示是高性能面部识别的关键挑战之一。最近通过减轻了阶层内冲突和阶级冲突来应对这一挑战。但是,每种冲突中无约束的噪声类型仍然使这些算法难以表现良好。为了更好地理解这一点,我们将每个类别的噪声类型以更细粒度的方式重新制定为n-身份| k^c-clusters。可以通过调整\ nkc的值来生成不同类型的嘈杂面。基于这种统一的公式,我们发现噪声射击表示学习背后的主要障碍是在不同的N,K和C下算法的灵活性。对于此潜在问题,我们提出了一种新方法,称为Evolving子中心学习〜(ESL),找到最佳的超平面,以准确描述大型嘈杂面的潜在空间。更具体地说,我们将每个类的M子中心初始化,ESL鼓励它通过生产,合并和丢弃操作自动与n-身份| k^c-clusters面对面。嘈杂面上属于相同身份的图像可以有效地收敛到同一子中心,并且具有不同身份的样本将被推开。我们通过对具有不同n,k和C的合成噪声数据集进行了精心的消融研究来检查其有效性
translated by 谷歌翻译
计算机辅助诊断(CAD)系统可以为皮肤病的临床诊断提供参考。卷积神经网络(CNN)不仅可以提取视觉元素,例如颜色和形状,而且还可以提取语义特征。因此,他们在皮肤镜检查图像的许多任务中取得了重大改进。皮肤镜检查的成像没有主要方向,表明数据集中有大量的皮肤病变靶旋转。然而,CNN缺乏抗旋转能力,这必然会影响CNN的特征提取能力。我们提出了一个旋转平均值(RM)网络,以从皮肤镜图像中提取旋转不变性特征。在RM中,每组旋转的特征地图对应于一组重量共享卷积输出,并使用MeanOut操作融合以获取最终特征图。通过理论推导,提出的RM网络是旋转等值的,并且在全球平均池(GAP)操作之后,可以提取旋转不变的特征。提取的旋转不变特征可以更好地代表皮肤镜图像的分类和检索任务中的原始数据。提出的RM是一般操作,它不会改变网络结构或增加任何参数,并且可以灵活地嵌入CNN的任何部分。大量实验是在皮肤镜检查图像数据集上进行的。结果表明,我们的方法优于其他抗旋转方法,并在皮肤镜检查图像分类和检索任务方面取得了重大改进,表明在皮肤镜图像领域旋转不变性的潜力。
translated by 谷歌翻译
闭塞对单眼多人3D人体姿势估计构成了极大的威胁,这是由于封闭器的形状,外观和位置方面的差异很大。尽管现有的方法试图用姿势先验/约束,数据增强或隐性推理处理遮挡,但它们仍然无法概括地看不见姿势或遮挡案例,并且在出现多人时可能会犯大错误。受到人类从可见线索推断关节的显着能力的启发,我们开发了一种方法来显式建模该过程,该过程可以显着改善有或没有遮挡的情况下,可以显着改善自下而上的多人姿势估计。首先,我们将任务分为两个子任务:可见的关键点检测和遮挡的关键点推理,并提出了深入监督的编码器蒸馏(DSED)网络以求解第二个网络。为了训练我们的模型,我们提出了一种骨骼引导的人形拟合(SSF)方法,以在现有数据集上生成伪遮挡标签,从而实现明确的遮挡推理。实验表明,从遮挡中明确学习可以改善人类姿势估计。此外,利用可见关节的特征级信息使我们可以更准确地推理遮挡关节。我们的方法的表现优于几个基准的最新自上而下和自下而上的方法。
translated by 谷歌翻译
基于AI的蛋白质结构预测管道(例如AlphaFold2)已达到了几乎实验的准确性。这些高级管道主要依赖于多个序列比对(MSA)和模板作为输入来从同源序列中学习共进化信息。但是,从蛋白质数据库中搜索MSA和模板很耗时,通常需要数十分钟。因此,我们尝试通过仅使用蛋白质的主要序列来探索快速蛋白质结构预测的极限。提出了Helixfold单一的形式将大规模蛋白质语言模型与AlphaFold2的优质几何学习能力相结合。我们提出的方法,Helixfold单个,首先预先培训是一种大规模蛋白质语言模型(PLM),使用了数以千计的主要序列利用自我监督的学习范式,将用作MSA和模板的替代方法共同进化信息。然后,通过将预训练的PLM和AlphaFold2的必需组件组合在一起,我们获得了一个端到端可区分模型,以仅从主要序列预测原子的3D坐标。 Helixfold-Single在数据集CASP14和Cameo中得到了验证,通过基于MSA的方法,具有大型同源家庭的基于MSA的方法,从而实现了竞争精度。此外,与主流管道进行蛋白质结构预测相比,Helixfold单个的时间比主流管道的时间少得多,这表明其在需要许多预测的任务中的潜力。 HelixFold-Single的守则可在https://github.com/paddlepaddle/paddlehelix/tree/dev/dev/pprotein_folding/helixfold-single上获得,我们还在https://paddlehelix.baidu.com上提供稳定的Web服务。 /app/drug/protein-single/prevast。
translated by 谷歌翻译
视频异常检测是计算机视觉社区的一项具有挑战性的任务。大多数基于任务的方法都不考虑独特的空间和时间模式的独立性,而两流结构则缺乏对相关性的探索。在本文中,我们提出了时空记忆增强了两个流动自动编码器框架,该框架可以独立学习外观正常和运动正常,并通过对抗性学习探索相关性。具体而言,我们首先设计了两个代理任务来训练两流结构,以隔离地提取外观和运动特征。然后,将原型特征记录在相应的空间和时间内存池中。最后,编码编码网络通过歧视者进行对抗学习,以探索空间和时间模式之间的相关性。实验结果表明,我们的框架优于最先进的方法,在UCSD PED2和CUHK Avenue数据集上,AUC达到98.1%和89.8%。
translated by 谷歌翻译
通过最小化kullback-leibler(kl)差异,变化推断近似于非差异分布。尽管这种差异对于计算有效,并且已在应用中广泛使用,但它具有一些不合理的属性。例如,它不是一个适当的度量标准,即,它是非对称的,也不保留三角形不等式。另一方面,最近的最佳运输距离显示出比KL差异的一些优势。在这些优势的帮助下,我们通过最大程度地减少切片的瓦斯汀距离,这是一种由最佳运输产生的有效度量,提出了一种新的变异推理方法。仅通过运行MCMC而不能解决任何优化问题,就可以简单地近似切片的Wasserstein距离。我们的近似值也不需要变异分布的易于处理密度函数,因此诸如神经网络之类的发电机可以摊销近似家庭。此外,我们提供了方法的理论特性分析。说明了关于合成和真实数据的实验,以显示提出的方法的性能。
translated by 谷歌翻译
本文提出了一个最佳的运动计划框架,以自动生成多功能的四足动物跳跃运动(例如,翻转,旋转)。通过质心动力学的跳跃运动被配制为受机器人基诺动力约束的12维黑盒优化问题。基于梯度的方法在解决轨迹优化方面取得了巨大成功(TO),但是,需要先验知识(例如,参考运动,联系时间表),并导致次级最佳解决方案。新提出的框架首先采用了基于启发式的优化方法来避免这些问题。此外,针对机器人地面反作用力(GRF)计划中的基于启发式算法的算法创建了优先级的健身函数,增强收敛性和搜索性能。由于基于启发式的算法通常需要大量的时间,因此计划离线运动并作为运动前库存储。选择器旨在自动选择用用户指定或感知信息作为输入的动作。该框架仅通过几项具有挑战性的跳跃动作在开源迷你室中的简单连续跟踪PD控制器进行了成功验证,包括跳过30厘米高度的窗户形状的障碍物,并在矩形障碍物上与左悬挂式障碍物。 27厘米高。
translated by 谷歌翻译
促性腺营养蛋白释放激素受体(GNRH1R)是治疗子宫疾病的有前途的治疗靶标。迄今为止,在临床研究中可以使用几个GNRH1R拮抗剂,而不满足多个财产约束。为了填补这一空白,我们旨在开发一个基于学习的框架,以促进有效,有效地发现具有理想特性的新的口服小型分子药物靶向GNRH1R。在目前的工作中,首先通过充分利用已知活性化合物和靶蛋白的结构的信息,首先提出了配体和结构组合模型,即LS-Molgen,首先提出了分子生成的方法,该信息通过其出色的性能证明了这一点。比分别基于配体或结构方法。然后,进行了A中的计算机筛选,包括活性预测,ADMET评估,分子对接和FEP计算,其中约30,000个生成的新型分子被缩小到8,以进行实验合成和验证。体外和体内实验表明,其中三个表现出有效的抑制活性(化合物5 IC50 = 0.856 nm,化合物6 IC50 = 0.901 nm,化合物7 IC50 = 2.54 nm对GNRH1R,并且化合物5在基本PK属性中表现良好例如半衰期,口服生物利用度和PPB等。我们认为,提议的配体和结构组合结合的分子生成模型和整个计算机辅助工作流程可能会扩展到从头开始的类似任务或铅优化的类似任务。
translated by 谷歌翻译
近年来,视频实例细分(VIS)在很大程度上是通过离线模型提出的,而在线模型由于其性能较低而逐渐吸引了关注。但是,在线方法在处理长期视频序列和正在进行的视频中具有固有的优势,而由于计算资源的限制,离线模型失败了。因此,如果在线模型可以比离线模型获得可比甚至更好的性能,那将是非常可取的。通过解剖当前的在线模型和离线模型,我们证明了性能差距的主要原因是由特征空间中不同实例之间相似外观引起的框架之间存在错误的关联。观察到这一点,我们提出了一个基于对比度学习的在线框架,该框架能够学习更多的歧视实例嵌入,以进行关联,并充分利用历史信息以达到稳定性。尽管它很简单,但我们的方法在三个基准测试上都优于在线和离线方法。具体来说,我们在YouTube-VIS 2019上实现了49.5 AP,比先前的在线和离线艺术分别取得了13.2 AP和2.1 AP的显着改善。此外,我们在OVIS上实现了30.2 AP,这是一个更具挑战性的数据集,具有大量的拥挤和遮挡,超过了14.8 AP的先前艺术。提出的方法在第四次大规模视频对象分割挑战(CVPR2022)的视频实例细分轨道中赢得了第一名。我们希望我们方法的简单性和有效性以及对当前方法的见解,可以阐明VIS模型的探索。
translated by 谷歌翻译
联合学习(FL)已成为机器学习中的实用且流行的范式。但是,目前,没有系统的解决方案涵盖不同的用例。从业者经常面临如何为其用例选择匹配的FL框架的挑战。在这项工作中,我们提出了Unifed,这是对现有开源FL框架进行标准化评估的第一个统一基准。在15个评估方案中,我们从功能,可用性和系统性能的角度出发了9个现有流行开源的FL框架的定性和定量评估结果。我们还根据基准结论提供有关框架选择的建议,并指出未来的改进方向。
translated by 谷歌翻译