建模相互依存的关键基础架构的恢复是量化和优化社会弹性对破坏性事件的关键组成部分。但是,在随机破坏事件下模拟大规模相互依赖系统的恢复在计算上是昂贵的。因此,我们建议在本文中应用深度运算符网络(DeepOnets),以加速相互依赖系统的恢复模型。 DeepOnets是ML架构,可从数据中识别数学运算符。管理方程式的形式deponets标识和相互依赖系统恢复模型的管理方程相似。因此,我们假设deponets可以通过很少的培训数据有效地对相互依存的系统恢复进行建模。我们将deponets应用于具有十六个状态的四个相互依存系统的简单情况。总体而言,Deponets在预测这些相互依存的系统在与参考结果相比的训练样本数据中的恢复方面表现令人满意。
translated by 谷歌翻译
TRISTRUCCUCTIONATIOPIC(TRISO)涂层颗粒燃料是强大的核燃料,并确定其可靠性对于先进的核技术的成功至关重要。然而,Triso失效概率很小,相关的计算模型很昂贵。我们使用耦合的主动学习,多尺度建模和子集模拟来估计使用几个1D和2D模型的Triso燃料的故障概率。通过多尺度建模,我们用来自两个低保真(LF)模型的信息融合,取代了昂贵的高保真(HF)模型评估。对于1D TRISO模型,我们考虑了三种多倍性建模策略:仅克里格,Kriging LF预测加克里格校正,深神经网络(DNN)LF预测加克里格校正。虽然这些多尺度建模策略的结果令人满意地比较了从两个LF模型中使用信息融合的策略,但是通常常常称为HF模型。接下来,对于2D Triso模型,我们考虑了两个多倍性建模策略:DNN LF预测加克里格校正(数据驱动)和1D Triso LF预测加克里格校正(基于物理学)。正如所预期的那样,基于物理的策略一直需要对HF模型的最少的呼叫。然而,由于DNN预测是瞬时的,数据驱动的策略具有较低的整体模拟时间,并且1D Triso模型需要不可忽略的模拟时间。
translated by 谷歌翻译
在许多实际应用程序中,强化学习(RL)代理可能必须解决多个任务,每个任务通常都是通过奖励功能建模的。如果奖励功能是线性表达的,并且代理商以前已经学会了一组针对不同任务的策略,则可以利用后继功能(SFS)来组合此类策略并确定有关新问题的合理解决方案。但是,确定的解决方案不能保证是最佳的。我们介绍了一种解决此限制的新颖算法。它允许RL代理结合现有政策并直接确定任意新问题的最佳政策,而无需与环境进行任何进一步的互动。我们首先(在轻度假设下)表明,SFS解决的转移学习问题等同于学习在RL中优化多个目标的学习问题。然后,我们引入了基于SF的乐观线性支持算法的扩展,以学习一组SFS构成凸面覆盖范围集的策略。我们证明,该集合中的策略可以通过广义策略改进组合,以构建任何可表达的新任务的最佳行为,而无需任何其他培训样本。我们从经验上表明,在价值函数近似下,我们的方法在离散和连续域中优于最先进的竞争算法。
translated by 谷歌翻译
整个幻灯片组织学图像中的组织类型学注释是一项复杂而乏味但既繁琐但必要的任务,用于开发计算病理学模型。我们建议通过将开放式识别技术应用于共同分类属于一组带注释类的组织的任务来解决此问题。临床相关的组织类别,同时拒绝测试时间开放式样品,即属于训练集中不存在的类别的图像。为此,我们引入了一种基于训练模型的开放式组织病理图像识别的新方法,以准确识别图像类别,并同时预测已应用了哪些数据增强变换。在测试时间中,我们测量了模型的置信度预测这种转换,我们期望开放集中的图像较低。在组织学图像的结直肠癌评估的背景下,我们进行了全面的实验,这些实验为我们的方法提供了证据,以自动从未知类别中识别样品的优势。代码在https://github.com/agaldran/t3po上发布。
translated by 谷歌翻译
为化疗中的许多重要任务收集标记数据是耗时的,需要昂贵的实验。近年来,机器学习已被用来使用大规模未标记的分子数据集学习分子的丰富表示,并转移知识,以解决有限数据集的更具挑战性的任务。变形AutoEncoders是已经提出用于进行化学性质预测和分子产生任务的转移的工具之一。在这项工作中,我们提出了一种简单的方法,可以通过在变形自身偏析者学习的表示中包含关于相关分子描述符的附加信息来改善机器学习模型的化学性质预测性能。我们验证了三个属性预测的方法询问。我们探讨了合并的描述符的数量,描述符和目标属性之间的相关性,数据集等的尺寸的影响。最后,我们显示了性能预测模型的性能与属性预测数据集之间的距离和更大的未标记之间的关系。 DataSet在表示空间中。
translated by 谷歌翻译
制定了具有机器学习模拟(骆驼)项目的宇宙学和天体物理学,通过数千名宇宙的流体动力模拟和机器学习将宇宙学与天体物理学结合起来。骆驼包含4,233个宇宙学仿真,2,049个n-body和2,184个最先进的流体动力模拟,在参数空间中采样巨大的体积。在本文中,我们介绍了骆驼公共数据发布,描述了骆驼模拟的特性和由它们产生的各种数据产品,包括光环,次麦,银河系和空隙目录,功率谱,Bispectra,Lyman - $ \ Alpha $光谱,概率分布函数,光环径向轮廓和X射线光子列表。我们还释放了超过骆驼 - 山姆的数十亿个星系的目录:与Santa Cruz半分析模型相结合的大量N身体模拟。我们释放包含350多个Terabytes的所有数据,并包含143,922个快照,数百万光环,星系和摘要统计数据。我们提供有关如何访问,下载,读取和处理数据AT \ URL {https://camels.readthedocs.io}的进一步技术详细信息。
translated by 谷歌翻译
我们调查部分观察到的Markov决策过程(POMDPS),通过描述状态,观察和控制不确定性的熵术语规范化的成本函数。标准POMDP技术显示为对这些熵正则化的POMDP提供有界误差解决方案,当正规化涉及状态,观察和控制轨迹的联合熵时,具有精确的解决方案。我们的联合熵结果特别令人惊讶,因为它构成了一种新颖的,无解决的活性状态估计的制剂。
translated by 谷歌翻译
点设置分类旨在建立一个表示学习模型,该模型区分点设置数据的空间和分类配置。此问题是在许多应用领域,如免疫学和微生物生态学的社会重要性。由于不同类别的点之间的相互作用并不总是平等,因此这个问题是具有挑战性的;结果,表示学习模型必须选择性地学习最相关的多分类关系。相关工程有限(1)学习不同多分类关系的重要性,特别是对于高阶相互作用,(2)并不完全利用超出只测量相对距离或应用前馈的点的空间分布神经网络坐标。为了克服这些限制,我们利用动态图形卷积神经网络(DGCNN)架构来设计新的多类别DGCNN(MC-DGCNN),为多分类点设置分类提供位置表示和点对注意层。 MC-DGCNN具有识别每个点对的分类重要性,并将其扩展到N-Way空间关系,同时仍然保留DGCNN(例如,差异性)的所有属性和益处。实验结果表明,该拟议的架构是在计算上有效的,显着优于现实世界数据集上的当前深度学习架构。
translated by 谷歌翻译
代表学习者认为,解开变异的因素已经证明是在解决各种现实世界的关切方面是重要的,如公平和可意识。最初由具有独立假设的无监督模型组成,最近,监督和相关特征较弱,但没有生成过程的因果关系。相比之下,我们在原因生成过程的制度下工作,因为生成因子是独立的,或者可能被一组观察或未观察到的混乱困惑。我们通过解散因果过程的概念对解开表示的分析。我们激励对新指标和数据集进行研究,以研究因果解剖和提出两个评估指标和数据集。我们展示了我们的指标捕获了解开了因果过程的探索。最后,我们利用我们的指标和数据集对艺术艺术状态的实证研究进行了脱扣代表学习者,以从因果角度来评估它们。
translated by 谷歌翻译
功率曲线捕获风速与特定风力涡轮机的输出功率之间的关系。这种功能的准确回归模型在监控,维护,设计和规划方面证明是有用的。然而,在实践中,测量并不总是对应于理想曲线:电源缩减将显示为(附加)功能组件。这种多值关系不能通过常规回归建模,并且在预处理期间通常去除相关数据。目前的工作表明了一种替代方法,可以在缩减电力数据中推断多值关系。使用基于人群的方法,将概率回归模型的重叠混合应用于从操作风电场内的涡轮机记录的信号。示出了模型,以便在整个人口中提供精确的实际功率数据表示。
translated by 谷歌翻译