多目标多摄像机跟踪(MTMCT)在智能视频分析,监视视频检索和其他应用程序方案中起着重要作用。如今,基于深度学习的MTMCT一直是主流,并且在跟踪准确性和效率方面取得了令人着迷的改进。但是,根据我们的调查,缺乏关注现实应用程序方案的数据集限制了当前基于学习的MTMCT模型的进一步改进。具体而言,基于学习的MTMCT模型通过通用数据集培训通常无法在现实世界应用方案中获得令人满意的结果。在此激励的情况下,本文提出了一个半自动数据注释系统,以促进现实世界中的MTMCT数据集建立。拟议的系统首先采用基于深度学习的单相机轨迹生成方法来自动从监视视频中提取轨迹。随后,该系统在以下手动跨摄像机轨迹匹配过程中提供了建议列表。推荐列表是根据侧面信息生成的,包括相机位置,时间戳关系和背景场景。在实验阶段,广泛的结果进一步证明了拟议系统的效率。
translated by 谷歌翻译
This paper proposes a graph-based approach to representing spatio-temporal trajectory data that allows an effective visualization and characterization of city-wide traffic dynamics. With the advance of sensor, mobile, and Internet of Things (IoT) technologies, vehicle and passenger trajectories are being increasingly collected on a massive scale and are becoming a critical source of insight into traffic pattern and traveller behaviour. To leverage such trajectory data to better understand traffic dynamics in a large-scale urban network, this study develops a trajectory-based network traffic analysis method that converts individual trajectory data into a sequence of graphs that evolve over time (known as dynamic graphs or time-evolving graphs) and analyses network-wide traffic patterns in terms of a compact and informative graph-representation of aggregated traffic flows. First, we partition the entire network into a set of cells based on the spatial distribution of data points in individual trajectories, where the cells represent spatial regions between which aggregated traffic flows can be measured. Next, dynamic flows of moving objects are represented as a time-evolving graph, where regions are graph vertices and flows between them are treated as weighted directed edges. Given a fixed set of vertices, edges can be inserted or removed at every time step depending on the presence of traffic flows between two regions at a given time window. Once a dynamic graph is built, we apply graph mining algorithms to detect change-points in time, which represent time points where the graph exhibits significant changes in its overall structure and, thus, correspond to change-points in city-wide mobility pattern throughout the day (e.g., global transition points between peak and off-peak periods).
translated by 谷歌翻译
Current advances in recommender systems have been remarkably successful in optimizing immediate engagement. However, long-term user engagement, a more desirable performance metric, remains difficult to improve. Meanwhile, recent reinforcement learning (RL) algorithms have shown their effectiveness in a variety of long-term goal optimization tasks. For this reason, RL is widely considered as a promising framework for optimizing long-term user engagement in recommendation. Despite being a promising approach, the application of RL heavily relies on well-designed rewards, but designing rewards related to long-term user engagement is quite difficult. To mitigate the problem, we propose a novel paradigm, Preference-based Recommender systems (PrefRec), which allows RL recommender systems to learn from preferences about users' historical behaviors rather than explicitly defined rewards. Such preferences are easily accessible through techniques such as crowdsourcing, as they do not require any expert knowledge. With PrefRec, we can fully exploit the advantages of RL in optimizing long-term goals, while avoiding complex reward engineering. PrefRec uses the preferences to automatically train a reward function in an end-to-end manner. The reward function is then used to generate learning signals to train the recommendation policy. Furthermore, we design an effective optimization method for PrefRec, which uses an additional value function, expectile regression and reward model pre-training to improve the performance. Extensive experiments are conducted on a variety of long-term user engagement optimization tasks. The results show that PrefRec significantly outperforms previous state-of-the-art methods in all the tasks.
translated by 谷歌翻译
Optimal Transport (OT) provides a useful geometric framework to estimate the permutation matrix under unsupervised cross-lingual word embedding (CLWE) models that pose the alignment task as a Wasserstein-Procrustes problem. However, linear programming algorithms and approximate OT solvers via Sinkhorn for computing the permutation matrix come with a significant computational burden since they scale cubically and quadratically, respectively, in the input size. This makes it slow and infeasible to compute OT distances exactly for a larger input size, resulting in a poor approximation quality of the permutation matrix and subsequently a less robust learned transfer function or mapper. This paper proposes an unsupervised projection-based CLWE model called quantized Wasserstein Procrustes (qWP). qWP relies on a quantization step of both the source and target monolingual embedding space to estimate the permutation matrix given a cheap sampling procedure. This approach substantially improves the approximation quality of empirical OT solvers given fixed computational cost. We demonstrate that qWP achieves state-of-the-art results on the Bilingual lexicon Induction (BLI) task.
translated by 谷歌翻译
Recently, segmentation-based methods are quite popular in scene text detection, which mainly contain two steps: text kernel segmentation and expansion. However, the segmentation process only considers each pixel independently, and the expansion process is difficult to achieve a favorable accuracy-speed trade-off. In this paper, we propose a Context-aware and Boundary-guided Network (CBN) to tackle these problems. In CBN, a basic text detector is firstly used to predict initial segmentation results. Then, we propose a context-aware module to enhance text kernel feature representations, which considers both global and local contexts. Finally, we introduce a boundary-guided module to expand enhanced text kernels adaptively with only the pixels on the contours, which not only obtains accurate text boundaries but also keeps high speed, especially on high-resolution output maps. In particular, with a lightweight backbone, the basic detector equipped with our proposed CBN achieves state-of-the-art results on several popular benchmarks, and our proposed CBN can be plugged into several segmentation-based methods. Code will be available on https://github.com/XiiZhao/cbn.pytorch.
translated by 谷歌翻译
Stochastic gradients closely relate to both optimization and generalization of deep neural networks (DNNs). Some works attempted to explain the success of stochastic optimization for deep learning by the arguably heavy-tail properties of gradient noise, while other works presented theoretical and empirical evidence against the heavy-tail hypothesis on gradient noise. Unfortunately, formal statistical tests for analyzing the structure and heavy tails of stochastic gradients in deep learning are still under-explored. In this paper, we mainly make two contributions. First, we conduct formal statistical tests on the distribution of stochastic gradients and gradient noise across both parameters and iterations. Our statistical tests reveal that dimension-wise gradients usually exhibit power-law heavy tails, while iteration-wise gradients and stochastic gradient noise caused by minibatch training usually do not exhibit power-law heavy tails. Second, we further discover that the covariance spectra of stochastic gradients have the power-law structures in deep learning. While previous papers believed that the anisotropic structure of stochastic gradients matters to deep learning, they did not expect the gradient covariance can have such an elegant mathematical structure. Our work challenges the existing belief and provides novel insights on the structure of stochastic gradients in deep learning.
translated by 谷歌翻译
Frame Semantic Role Labeling (FSRL) identifies arguments and labels them with frame semantic roles defined in FrameNet. Previous researches tend to divide FSRL into argument identification and role classification. Such methods usually model role classification as naive multi-class classification and treat arguments individually, which neglects label semantics and interactions between arguments and thus hindering performance and generalization of models. In this paper, we propose a query-based framework named ArGument Extractor with Definitions in FrameNet (AGED) to mitigate these problems. Definitions of frames and frame elements (FEs) in FrameNet can be used to query arguments in text. Encoding text-definition pairs can guide models in learning label semantics and strengthening argument interactions. Experiments show that AGED outperforms previous state-of-the-art by up to 1.3 F1-score in two FrameNet datasets and the generalization power of AGED in zero-shot and fewshot scenarios. Our code and technical appendix is available at https://github.com/PKUnlp-icler/AGED.
translated by 谷歌翻译
Anomaly detection and localization are widely used in industrial manufacturing for its efficiency and effectiveness. Anomalies are rare and hard to collect and supervised models easily over-fit to these seen anomalies with a handful of abnormal samples, producing unsatisfactory performance. On the other hand, anomalies are typically subtle, hard to discern, and of various appearance, making it difficult to detect anomalies and let alone locate anomalous regions. To address these issues, we propose a framework called Prototypical Residual Network (PRN), which learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions. PRN mainly consists of two parts: multi-scale prototypes that explicitly represent the residual features of anomalies to normal patterns; a multisize self-attention mechanism that enables variable-sized anomalous feature learning. Besides, we present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies. Extensive experiments on the challenging and widely used MVTec AD benchmark show that PRN outperforms current state-of-the-art unsupervised and supervised methods. We further report SOTA results on three additional datasets to demonstrate the effectiveness and generalizability of PRN.
translated by 谷歌翻译
Incorporating external knowledge into the response generation process is essential to building more helpful and reliable dialog agents. However, collecting knowledge-grounded conversations is often costly, calling for a better pre-trained model for grounded dialog generation that generalizes well w.r.t. different types of knowledge. In this work, we propose KPT (Keyword-guided Pre-Training), a novel self-supervised pre-training method for grounded dialog generation without relying on extra knowledge annotation. Specifically, we use a pre-trained language model to extract the most uncertain tokens in the dialog as keywords. With these keywords, we construct two kinds of knowledge and pre-train a knowledge-grounded response generation model, aiming at handling two different scenarios: (1) the knowledge should be faithfully grounded; (2) it can be selectively used. For the former, the grounding knowledge consists of keywords extracted from the response. For the latter, the grounding knowledge is additionally augmented with keywords extracted from other utterances in the same dialog. Since the knowledge is extracted from the dialog itself, KPT can be easily performed on a large volume and variety of dialogue data. We considered three data sources (open-domain, task-oriented, conversational QA) with a total of 2.5M dialogues. We conduct extensive experiments on various few-shot knowledge-grounded generation tasks, including grounding on dialog acts, knowledge graphs, persona descriptions, and Wikipedia passages. Our comprehensive experiments and analyses demonstrate that KPT consistently outperforms state-of-the-art methods on these tasks with diverse grounding knowledge.
translated by 谷歌翻译
Surgical activity recognition and prediction can help provide important context in many Robot-Assisted Surgery (RAS) applications, for example, surgical progress monitoring and estimation, surgical skill evaluation, and shared control strategies during teleoperation. Transformer models were first developed for Natural Language Processing (NLP) to model word sequences and soon the method gained popularity for general sequence modeling tasks. In this paper, we propose the novel use of a Transformer model for three tasks: gesture recognition, gesture prediction, and trajectory prediction during RAS. We modify the original Transformer architecture to be able to generate the current gesture sequence, future gesture sequence, and future trajectory sequence estimations using only the current kinematic data of the surgical robot end-effectors. We evaluate our proposed models on the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) and use Leave-One-User-Out (LOUO) cross-validation to ensure the generalizability of our results. Our models achieve up to 89.3\% gesture recognition accuracy, 84.6\% gesture prediction accuracy (1 second ahead) and 2.71mm trajectory prediction error (1 second ahead). Our models are comparable to and able to outperform state-of-the-art methods while using only the kinematic data channel. This approach can enable near-real time surgical activity recognition and prediction.
translated by 谷歌翻译