We propose a novel approach to self-supervised learning of point cloud representations by differentiable neural rendering. Motivated by the fact that informative point cloud features should be able to encode rich geometry and appearance cues and render realistic images, we train a point-cloud encoder within a devised point-based neural renderer by comparing the rendered images with real images on massive RGB-D data. The learned point-cloud encoder can be easily integrated into various downstream tasks, including not only high-level tasks like 3D detection and segmentation, but low-level tasks like 3D reconstruction and image synthesis. Extensive experiments on various tasks demonstrate the superiority of our approach compared to existing pre-training methods.
translated by 谷歌翻译
Existing 3D-aware image synthesis approaches mainly focus on generating a single canonical object and show limited capacity in composing a complex scene containing a variety of objects. This work presents DisCoScene: a 3Daware generative model for high-quality and controllable scene synthesis. The key ingredient of our method is a very abstract object-level representation (i.e., 3D bounding boxes without semantic annotation) as the scene layout prior, which is simple to obtain, general to describe various scene contents, and yet informative to disentangle objects and background. Moreover, it serves as an intuitive user control for scene editing. Based on such a prior, the proposed model spatially disentangles the whole scene into object-centric generative radiance fields by learning on only 2D images with the global-local discrimination. Our model obtains the generation fidelity and editing flexibility of individual objects while being able to efficiently compose objects and the background into a complete scene. We demonstrate state-of-the-art performance on many scene datasets, including the challenging Waymo outdoor dataset. Project page: https://snap-research.github.io/discoscene/
translated by 谷歌翻译
Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and generative adversarial network (GANs), have made tremendous progress in 2D image synthesis. Recently, researchers switch their attentions from the 2D space to the 3D space considering that 3D data better aligns with our physical world and hence enjoys great potential in practice. However, unlike a 2D image, which owns an efficient representation (i.e., pixel grid) by nature, representing 3D data could face far more challenges. Concretely, we would expect an ideal 3D representation to be capable enough to model shapes and appearances in details, and to be highly efficient so as to model high-resolution data with fast speed and low memory cost. However, existing 3D representations, such as point clouds, meshes, and recent neural fields, usually fail to meet the above requirements simultaneously. In this survey, we make a thorough review of the development of 3D generation, including 3D shape generation and 3D-aware image synthesis, from the perspectives of both algorithms and more importantly representations. We hope that our discussion could help the community track the evolution of this field and further spark some innovative ideas to advance this challenging task.
translated by 谷歌翻译
最近,基于神经辐射场(NERF)的进步,在3D人类渲染方面取得了迅速的进展,包括新的视图合成和姿势动画。但是,大多数现有方法集中在特定于人的培训上,他们的培训通常需要多视频视频。本文涉及一项新的挑战性任务 - 为在培训中看不见的人提供新颖的观点和新颖的姿势,仅使用多视图图像作为输入。对于此任务,我们提出了一种简单而有效的方法,以训练具有多视图像作为条件输入的可推广的NERF。关键成分是结合规范NERF和体积变形方案的专用表示。使用规范空间使我们的方法能够学习人类的共享特性,并轻松地推广到不同的人。音量变形用于将规范空间与输入和目标图像以及查询图像特征连接起来,以进行辐射和密度预测。我们利用拟合在输入图像上的参数3D人类模型来得出变形,与我们的规范NERF结合使用,它在实践中效果很好。具有新的观点合成和构成动画任务的真实和合成数据的实验共同证明了我们方法的功效。
translated by 谷歌翻译
本文解决了从多视频视频中重建动画人类模型的挑战。最近的一些作品提出,将一个非刚性变形的场景分解为规范的神经辐射场和一组变形场,它们映射观察空间指向规范空间,从而使它们能够从图像中学习动态场景。但是,它们代表变形场作为转换矢量场或SE(3)字段,这使得优化高度不受限制。此外,这些表示无法通过输入动议明确控制。取而代之的是,我们基于线性混合剥皮算法引入了一个姿势驱动的变形场,该算法结合了混合重量场和3D人类骨架,以产生观察到的对应对应。由于3D人类骨骼更容易观察到,因此它们可以正规化变形场的学习。此外,可以通过输入骨骼运动来控制姿势驱动的变形场,以生成新的变形字段来动画规范人类模型。实验表明,我们的方法显着优于最近的人类建模方法。该代码可在https://zju3dv.github.io/animatable_nerf/上获得。
translated by 谷歌翻译
制作生成模型3D感知桥梁2D图像空间和3D物理世界仍然挑战。最近尝试用神经辐射场(NERF)配备生成的对抗性网络(GAN),其将3D坐标映射到像素值,作为3D之前。然而,nerf中的隐式功能具有一个非常局部的接收领域,使得发电机难以意识到全局结构。与此同时,NERF建立在体积渲染上,这可能太昂贵,无法产生高分辨率结果,提高优化难度。为了减轻这两个问题,我们通过明确学习结构表示和纹理表示,向高保真3D感知图像综合提出了一种作为Volumegan称为Volumegan的新颖框架。我们首先学习一个特征卷来表示底层结构,然后使用类似NERF的模型转换为特征字段。特征字段进一步累积到作为纹理表示的2D特征图中,然后是用于外观合成的神经渲染器。这种设计使得能够独立控制形状和外观。广泛的数据集的大量实验表明,我们的方法比以前的方法实现了足够更高的图像质量和更好的3D控制。
translated by 谷歌翻译
本文旨在减少透明辐射场的渲染时间。一些最近的作品用图像编码器配备了神经辐射字段,能够跨越场景概括,这避免了每场景优化。但是,它们的渲染过程通常很慢。主要因素是,在推断辐射场时,它们在空间中的大量点。在本文中,我们介绍了一个混合场景表示,它结合了最佳的隐式辐射场和显式深度映射,以便有效渲染。具体地,我们首先构建级联成本量,以有效地预测场景的粗糙几何形状。粗糙几何允许我们在场景表面附近的几个点来样,并显着提高渲染速度。该过程是完全可疑的,使我们能够仅从RGB图像共同学习深度预测和辐射现场网络。实验表明,该方法在DTU,真正的前瞻性和NERF合成数据集上展示了最先进的性能,而不是比以前的最可推广的辐射现场方法快至少50倍。我们还展示了我们的方法实时综合动态人类执行者的自由观点视频。代码将在https://zju3dv.github.io/enerf/处提供。
translated by 谷歌翻译
This paper addresses the challenge of 6DoF pose estimation from a single RGB image under severe occlusion or truncation. Many recent works have shown that a two-stage approach, which first detects keypoints and then solves a Perspective-n-Point (PnP) problem for pose estimation, achieves remarkable performance. However, most of these methods only localize a set of sparse keypoints by regressing their image coordinates or heatmaps, which are sensitive to occlusion and truncation. Instead, we introduce a Pixel-wise Voting Network (PVNet) to regress pixel-wise unit vectors pointing to the keypoints and use these vectors to vote for keypoint locations using RANSAC. This creates a flexible representation for localizing occluded or truncated keypoints. Another important feature of this representation is that it provides uncertainties of keypoint locations that can be further leveraged by the PnP solver. Experiments show that the proposed approach outperforms the state of the art on the LINEMOD, Occlusion LINEMOD and YCB-Video datasets by a large margin, while being efficient for real-time pose estimation. We further create a Truncation LINEMOD dataset to validate the robustness of our approach against truncation. The code will be avaliable at https://zju-3dv.github.io/pvnet/.
translated by 谷歌翻译
In recent years, arbitrary image style transfer has attracted more and more attention. Given a pair of content and style images, a stylized one is hoped that retains the content from the former while catching style patterns from the latter. However, it is difficult to simultaneously keep well the trade-off between the content details and the style features. To stylize the image with sufficient style patterns, the content details may be damaged and sometimes the objects of images can not be distinguished clearly. For this reason, we present a new transformer-based method named STT for image style transfer and an edge loss which can enhance the content details apparently to avoid generating blurred results for excessive rendering on style features. Qualitative and quantitative experiments demonstrate that STT achieves comparable performance to state-of-the-art image style transfer methods while alleviating the content leak problem.
translated by 谷歌翻译