为了解决深度生成模型学习中的挑战(例如,变分自动编码器的瑕疵和训练生成对抗网络的不稳定性,我们提出了一种新的深度生成模型,名为Wasserstein-Wasserstein自动编码器(WWAE)。我们制定了WWAE的最小化目标分布和生成的分布之间的惩罚最佳传输。通过注意到潜在代码Z的先前$ P_Z $和聚合后验$ Q_Z $可以被高斯人很好地捕获,所提出的WWAE利用方形的Wasserstein的封闭形式 - 因此,WWAE不会受到采样负担的影响,并且通过利用重新参数化技巧在计算上是有效的。数值结果在多个基准数据集上进行了评估,包括MNIST,时尚-MNIST和CelebA表明WWAE学习得更好。结构比VAE和生成更好的视觉质量和更高的样本r FID得分超过VAE和GAN。
translated by 谷歌翻译
我们提出了一个通用框架来通过概率空间上的\ textbf {V} ariational \ textbf {Gr} adient Fl \ textbf {ow}(VGrow)学习深层生成模型。渐近收敛到目标分布的演化分布由向量场控制,向量场是它们之间的$ f $ - 发散的第一个变化的负梯度。我们通过残差映射的无限时间组合证明了演化分布与前向分布一致,残差映射是沿矢量场的特征映射的扰动。矢量场取决于前推分布的密度比和目标分布,这可以从二元分类问题中一致地学习。我们提出的VGrow方法与其他流行方法(如VAE,GAN和基于流的方法)的连接已在此框架中建立,获得了深层生成学习的新见解。我们还评估了几个常用的差异,包括Kullback-Leibler,Jensen-Shannon,Jeffrey分歧以及我们新发现的`logD'分歧,它作为logD-trick GAN的目标函数。基准数据集的实验结果表明,VGrow可以稳定,有效的方式生成高保真图像,通过最先进的GAN实现竞争性能。
translated by 谷歌翻译
车辆重新识别是一个重要的问题,随着视频监控和智能传输应用的快速扩展而变得可取。通过回顾人类视觉的识别过程,我们发现当人类识别不同的车辆时存在本地的等级依赖性。具体地,人类总是首先确定一个车辆的粗粒度类别,即汽车模型/类型。然后,在预测的汽车模型/类型的分支下,他们将通过细微的视觉线索(例如,定制的绘画和挡风玻璃)在细粒度水平上识别特定的车辆。受粗到细分层过程的启发,我们提出了一种用于车辆重新识别的端到端基于RNN的分层注意(RNN-HA)分类模型。 RNN-HA由三个相互耦合的模块组成:第一个模块生成车辆图像的图像表示,第二个层次模块模拟上述层级依赖关系,最后一个注意模块侧重于捕获特定车辆彼此之间的细微视觉信息识别。通过对两个车辆重新识别基准数据集VeRi和VehicleID进行全面的实验,我们证明了所提出的模型实现了超越现有技术的卓越性能。
translated by 谷歌翻译
我们提出了MedSim,一种基于Publicwell建立的生物医学知识图(KGs)和大规模语料库的新型语义相似性方法,研究抗生素的治疗替代。除了KGs的层次结构和语料库外,MedSim还通过构建多维医学特定的特征向量来进一步解释医学特征。采用医生评分的528种抗生素对数据集进行评价,MedSim与其他语义相似性方法相比具有统计学上的显着改善。此外,还提出了MedSim在药物替代和药物滥用预防方面的一些有希望的应用。
translated by 谷歌翻译
近十年来,随着深度卷积神经网络(CNN)的发展,许多最先进的图像分类和音频分类算法取得了显着的成功。但是,大多数工作只利用单一类型的训练数据。在本文中,我们通过利用CNN对视觉(图像)和音频(声音)数据的组合来对鸟类进行分类的研究,该CNN已被稀疏地处理。具体而言,我们提出了基于CNN的融合策略(早期,中期,晚期)类型的多模态学习模型,以解决组合训练数据跨域的问题。我们提出的方法的优点在于我们可以利用CNN不仅从图像和音频数据(频谱图)中提取特征,而且还可以跨特征模式组合特征。在实验中,我们在综合CUB-200-2011标准数据集上训练和评估网络结构,结合我们最初收集的关于数据种类的音频数据集。我们观察到,利用两种数据的组合的模型优于仅用任何类型的数据训练的模型。我们还表明,转移学习可以显着提高分类性能。
translated by 谷歌翻译
MixUp是一种通过混合随机样本的数据增强方法,已经显示出能够显着提高当前深度神经网络技术的预测准确性。然而,MixUp的力量大多是凭经验建立的,其工作和有效性在任何深度都没有解释。在本文中,我们对MixUp进行了理论上的理解,将其作为流形外正则化的一种形式,它将输入空间上的模型限制在数据流形之外。这项分析研究还使我们能够识别由流形侵入引起的MixUp限制,合成样本与歧管的实际例子相撞。这种侵入行为导致过度正规化,从而不合适。为了解决这个问题,我们进一步提出了一种新颖的正则化器,其中混合策略从数据中自适应地学习,并且包含多种入侵损失以避免与数据流形的冲突。我们使用几个基准数据集凭经验证明了我们的正则化器在超深度分类模型和MixUp的过度避免和精度改进方面的有效性。
translated by 谷歌翻译
通过主动选择小批量,可以提高随机梯度下降(SGD)的收敛速度。我们探索了在同一小批量中不太可能选择类似数据点的抽样方案。特别是,我们证明这种排斥采样方案降低了梯度测量仪的方差。这概括了最近关于将小批量多样化(Zhang et al。,2017)的决定点过程(DPP)用于更广泛的排斥点过程的工作。我们首先表明,通过多样化抽样的方差减少现象特别推广到非平稳点过程。然后,我们表明其他点过程在计算上可能比DPP更有效。特别是,我们提出并研究了泊松盘采样---计算机图形社交中经常遇到的---用于此任务。我们凭经验证明,我们的方法在收敛速度和最终模型性能方面都提高了标准SGD。
translated by 谷歌翻译
Heterogeneous network embedding (HNE) is a challenging task due to the diverse node types and/or diverse relationships between nodes. Existing HNE methods are typically unsupervised. To maximize the profit of utilizing the rare and valuable supervised information in HNEs, we develop a novel Active Heterogeneous Network Embedding (Ac-tiveHNE) framework, which includes two components: Discriminative Heterogeneous Network Embedding (DHNE) and Active Query in Heterogeneous Networks (AQHN). In DHNE, we introduce a novel semi-supervised heterogeneous network embedding method based on graph convolutional neu-ral network. In AQHN, we first introduce three active selection strategies based on uncertainty and representativeness, and then derive a batch selection method that assembles these strategies using a multi-armed bandit mechanism. ActiveHNE aims at improving the performance of HNE by feeding the most valuable supervision obtained by AQHN into DHNE. Experiments on public datasets demonstrate the effectiveness of ActiveHNE and its advantage on reducing the query cost.
translated by 谷歌翻译
自然语言生成(NLG)是面向任务的对话系统的重要组成部分。尽管近来NLG的神经方法取得了成功,但它们通常是针对具有丰富注释训练样本的特定域开发的。在本文中,我们在资源匮乏的环境中研究NLG,以便通过少量训练示例在新场景中生成句子。我们从元学习的角度阐述问题,并基于公认的模型不可知元学习(MAML)算法提出基于广义优化的方法(Meta-NLG)。 Meta-NLG定义了一组元代码,并直接将适应新的低资源NLG任务的目标纳入元学习优化过程。对具有多样性变化的大型多域数据集(MultiWoz)进行了广泛的实验。我们表明,Meta-NLG在各种低资源配置中明显优于其他方法。我们分析结果,并证明Meta-NLG适应极快和良好的资源情况。
translated by 谷歌翻译
尽管人体形状随着不同身份的不同身份而变化,但由于结构的相似性,它们可以嵌入到低维空间中。受近期基于变形的网格表示的潜在表示学习的启发,我们提出了一种类似于网络体系结构的自动编码器,可以专门为3D人体学习解开形状和姿势嵌入。我们还将粗到细的重构管道整合到解开过程中,以提高建筑的准确性。此外,我们构建了一个人体模型的大型数据集,其具有一致的拓扑结构,用于神经网络的学习。我们的学习嵌入不仅可以实现更高的重建精度,而且还可以通过插值,双向插值和潜在空间采样在3D人体创造中提供很大的灵活性,这通过广泛的实验得到证实。构建的数据集和训练的模型将公开发布。
translated by 谷歌翻译