通过扫描真实世界对象或场景采集的3D点云人已经发现了广泛的应用,包括融入式远程呈现,自动驾驶,监视等。它们通常是由噪声扰动或由低密度,这妨碍下游的任务,如表面重建遭受和理解。在本文中,我们提出了点集的二次采样恢复,这获知会聚点朝向下方的表面的点云的连续梯度场的新型范例。特别是,我们表示经由其梯度场点云 - 对数概率密度函数的梯度,和执行梯度场是连续的,这样就保证了模型可解优化的连续性。基于经由提出的神经网络估计出的连续梯度场,重新采样点云量对输入噪声或稀疏的点云执行基于梯度的马尔可夫链蒙特卡洛(MCMC)。此外,我们提出了点云恢复,基本上迭代地细化中间重采样点云,并在重采样过程容纳各种先验期间引入正则化到基于梯度的MCMC。大量的实验结果表明,该点集重采样实现了代表恢复工作,包括点云去噪和采样的国家的最先进的性能。
translated by 谷歌翻译
由于稀疏神经网络通常包含许多零权重,因此可以在不降低网络性能的情况下潜在地消除这些不必要的网络连接。因此,设计良好的稀疏神经网络具有显着降低拖鞋和计算资源的潜力。在这项工作中,我们提出了一种新的自动修剪方法 - 稀疏连接学习(SCL)。具体地,重量被重新参数化为可培训权重变量和二进制掩模的元素方向乘法。因此,由二进制掩模完全描述网络连接,其由单位步进函数调制。理论上,从理论上证明了使用直通估计器(STE)进行网络修剪的基本原理。这一原则是STE的代理梯度应该是积极的,确保掩模变量在其最小值处收敛。在找到泄漏的Relu后,SoftPlus和Identity Stes可以满足这个原理,我们建议采用SCL的身份STE以进行离散面膜松弛。我们发现不同特征的面具梯度非常不平衡,因此,我们建议将每个特征的掩模梯度标准化以优化掩码变量训练。为了自动训练稀疏掩码,我们将网络连接总数作为我们的客观函数中的正则化术语。由于SCL不需要由网络层设计人员定义的修剪标准或超级参数,因此在更大的假设空间中探讨了网络,以实现最佳性能的优化稀疏连接。 SCL克服了现有自动修剪方法的局限性。实验结果表明,SCL可以自动学习并选择各种基线网络结构的重要网络连接。 SCL培训的深度学习模型以稀疏性,精度和减少脚波特的SOTA人类设计和自动修剪方法训练。
translated by 谷歌翻译
跳舞视频retargeting旨在综合传输从源视频到目标人物的舞蹈移动的视频。以前的工作需要收集有几分钟的目标人物,以训练个性化模型的数千帧。但是,训练有素的模型只能生成同一个人的视频。为了解决限制,最近的工作解决了几次跳舞的视频retargeting,这将通过利用其中几帧来综合看不见的人的视频。在实践中,给出了一个人的几个框架,这些工作只是将它们视为一批没有时间相关性的单个图像,从而产生了低视觉质量的时间上不连贯的跳舞视频。在这项工作中,我们将一个人的一些框架模拟了一系列跳舞的移动,其中每个移动包含两个连续帧,以提取这个人的外观模式和时间动态。我们提出了通过跳舞移动的合成优化模型的初始化,从而利用时间感知的元学习,使得元训练模型可以朝着增强的视觉质量和加强不良人员的时间稳定性地调整。很少的框架。广泛的评估显示了我们的方法的大量优势。
translated by 谷歌翻译
预先培训用于学习可转让的视频文本表示的模型,以近年来引起了很多关注。以前的主导作品主要采用两个独立的编码器来有效检索,但忽略视频和文本之间的本地关联。另一种研究使用联合编码器与文本交互视频,但是由于每个文本视频对需要馈送到模型中的低效率。在这项工作中,我们能够通过新颖的借口任务进行微粒视频文本交互,以便通过新颖的借口任务进行检索,称为多项选择题(MCQ),其中参数模块BridgeFormer培训以接受由此构建的“问题”。文本功能通过诉诸视频功能。具体来说,我们利用了文本的丰富语义(即,名词和动词)来构建问题,可以培训视频编码器以捕获更多区域内容和时间动态。以问题和答案的形式,可以正确建立本地视频文本功能之间的语义关联。 BridgeFormer能够删除下游检索,只有两个编码器渲染高效且灵活的模型。我们的方法在具有不同实验设置(即零拍摄和微调)的五个数据集中,在五个数据集中优于最先进的方法,包括不同的实验设置(即零拍摄和微调),包括HOWTO100M(一百万个视频)。我们进一步开展零射击动作识别,可以作为视频到文本检索,我们的方法也显着超越了其对应物。作为额外的好处,我们的方法在单模下游任务中实现了竞争力,在单模下游任务上具有更短的预训练视频,例如,使用线性评估的动作识别。
translated by 谷歌翻译
作为混合成像技术,光声显微镜(PAM)成像由于激光强度的最大允许暴露,组织中超声波的衰减以及换能器的固有噪声而受到噪声。去噪是降低噪声的后处理方法,并且可以恢复PAM图像质量。然而,之前的去噪技术通常严重依赖于数学前导者以及手动选择的参数,导致对不同噪声图像的不令人满意和慢的去噪能,这极大地阻碍了实用和临床应用。在这项工作中,我们提出了一种基于深度学习的方法,可以从PAM图像中除去复杂的噪声,没有数学前导者,并手动选择不同输入图像的设置。注意增强的生成对抗性网络用于提取图像特征并去除各种噪声。在合成和实际数据集上证明了所提出的方法,包括幻影(叶静脉)和体内(小鼠耳血管和斑马鱼颜料)实验。结果表明,与先前的PAM去噪方法相比,我们的方法在定性和定量上恢复图像时表现出良好的性能。此外,为256次\ times256 $像素的图像实现了0.016 s的去噪速度。我们的方法对于PAM图像的去噪有效和实用。
translated by 谷歌翻译
本文报告了Chalearn的Autodl挑战系列的结果和后攻击分析,这有助于对自动学习(DL)进行分类,以便在各种环境中引入的深度学习(DL),但缺乏公平的比较。格式化所有输入数据模型(时间序列,图像,视频,文本,表格)作为张量,所有任务都是多标签分类问题。代码提交已在隐藏的任务上执行,具有限制时间和计算资源,推动快速获取结果的解决方案。在此设置中,DL方法占主导地位,但流行的神经结构搜索(NAS)是不切实际的。解决方案依赖于微调预培训的网络,架构匹配数据模块。挑战后测试没有透露超出强加时间限制的改进。虽然没有组件尤其原始或新颖,但是一个高级模块化组织出现了“Meta-Learner”,“数据摄入”,“模型选择器”,“模型/学习者”和“评估员”。这种模块化使得消融研究,揭示了(离坡)元学习,合奏和高效数据管理的重要性。异构模块组合的实验进一步证实了获胜解决方案的(本地)最优性。我们的挑战队遗产包括一个持久的基准(http://utodl.chalearn.org),获胜者的开放源代码,以及免费的“autodl自助服务”。
translated by 谷歌翻译
心肌活力的评估对于患有心肌梗塞的患者的诊断和治疗管理是必不可少的,并且心肌病理学的分类是本评估的关键。这项工作定义了医学图像分析的新任务,即进行心肌病理分割(MYOPS)结合三个序列的心脏磁共振(CMR)图像,该图像首次与Mycai 2020一起在Myops挑战中提出的。挑战提供了45个配对和预对准的CMR图像,允许算法将互补信息与三个CMR序列组合到病理分割。在本文中,我们提供了挑战的详细信息,从十五个参与者的作品调查,并根据五个方面解释他们的方法,即预处理,数据增强,学习策略,模型架构和后处理。此外,我们对不同因素的结果分析了结果,以检查关键障碍和探索解决方案的潜力,以及为未来的研究提供基准。我们得出结论,虽然报告了有前途的结果,但研究仍处于早期阶段,在成功应用于诊所之前需要更深入的探索。请注意,MyOPS数据和评估工具继续通过其主页(www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20 /)注册注册。
translated by 谷歌翻译
开放式识别通过将测试样本分类为来自训练或“未知”的已知类之一来概括分类任务。作为一种新的癌症药物鸡尾酒,不断发现改善治疗,预测癌症治疗可以在开放式识别问题方面自然地配制。由于在训练期间建模未知样品,因此从医疗开放式学习中的先前工作的直接实现产生了缺点。因此,我们重新确定问题方法,并应用最近的现有高斯混合变分性AutoEncoder模型,其实现了图像数据集的最新结果,乳腺癌患者数据。与最近的方法相比,我们不仅获得了更准确和稳健的分类结果,平均F1增加了24.5%,但我们还在部署到临床环境方面重新审视开放式识别。
translated by 谷歌翻译
多视图学习通过LEVERAG-ING-ING-ING相同对象之间的关系来完成分类的任务目标。大多数现有方法通常关注多个视图之间的一致性和互补性。但并非所有这些信息都非常有用于分类任务。相反,它是扮演重要作用的具体辨别信息。钟张等。通过联合非负矩阵分组探讨不同视图中的共同视图中存在的判别和非歧视信息。在本文中,我们通过使用跨熵损耗函数来改善该算法来改善目标函数更好。最后,我们在相同数据集上的原始实施更好的分类效果,并在许多最先进的算法上显示其优越性。
translated by 谷歌翻译
尽管近期长尾对象检测成功,但几乎所有长尾对象探测器都是基于两级范式开发的。在实践中,一阶段探测器在行业中更为普遍,因为它们具有简单而快速的管道,易于部署。然而,在长尾情景中,到目前为止,这项工作尚未探讨。在本文中,我们调查了在这种情况下是否可以良好的单级探测器表现良好。我们发现预防一步检测器实现优异性能的主要障碍是:在长尾数据分布下,类别遭受不同程度的正负不平衡问题。传统的焦点损失与所有类别的调制因子相同的调节因子平衡,因此未能处理长尾问题。为了解决这个问题,我们提出了根据其不平衡程度独立地重新平衡不同类别的正面和负样本的损失贡献的均等的联络损失(EFL)。具体而言,EFL采用类别相关调制因子,可以通过不同类别的培训状态来动态调整。对挑战性的LVIS V1基准进行的广泛实验表明了我们提出的方法的有效性。通过端到端培训管道,EF​​L在整体AP方面实现了29.2%,并对稀有类别进行了显着的性能改进,超越了所有现有的最先进的方法。代码可在https://github.com/modeltc/eod上获得。
translated by 谷歌翻译