贝叶斯优化(BO)是黑盒优化的有效工具,其中目标函数评估通常非常昂贵。在实践中,目标函数的低保真度近似值通常是可用的。最近,多保真贝叶斯优化(MFBO)引起了人们的关注,因为它可以通过使用那些更便宜的观测来显着加速优化过程。我们提出了一种新的MFBO信息理论方法。基于信息的方法在BO中很受欢迎,但是基于信息的MFBO的现有研究受到难以准确估计信息增益的困扰。 Ourapproach基于一种基于信息的BO变体,称为最大值熵搜索(MES),它极大地便于评估MFBO中的信息增益。实际上,我们的采集函数的计算是在分析上编写的,除了一维积分和采样之外,可以有效和准确地计算。我们通过使用合成和基准数据集证明了我们方法的有效性,并进一步展示了材料科学数据的实际应用。
translated by 谷歌翻译