轨迹预测是自动车辆(AVS)执行安全规划和导航的关键组件。然而,很少有研究分析了轨迹预测的对抗性稳健性,或者调查了最坏情况的预测是否仍然可以导致安全规划。为了弥合这种差距,我们通过提出普通车辆轨迹来最大化预测误差来研究轨迹预测模型的对抗鲁棒性。我们在三个模型和三个数据集上的实验表明,对手预测将预测误差增加超过150%。我们的案例研究表明,如果对手在对手轨迹之后驱动靠近目标AV的车辆,则AV可以进行不准确的预测,甚至不安全的驾驶决策。我们还通过数据增强和轨迹平滑探索可能的缓解技术。
translated by 谷歌翻译
生成符合用户意图的可控视频是计算机愿景中的一种吸引人而具有挑战性的话题。为了依次启用可动性的控制,提出了一种新颖的视频生成任务,名为Text-Image-to-Video Generation(TI2V)。通过可控的外观和运动,TI2V旨在从静态图像和文本描述生成视频。 TI2V任务的关键挑战在于从不同方式的外观和运动方面既呈对齐,以及在文本描述中处理不确定性。为了解决这些挑战,我们提出了一种基于运动锚的视频发生器(MAGE),其具有创新的运动锚(MA)结构来存储外观运动对准表示。为了模拟不确定性并提高多样性,它进一步允许注入显式条件和隐式随机性。通过三维轴向变压器,MA与给定图像相互作用以递归地产生令人满意的可控性和多样性的下一个帧。伴随新任务,我们构建了基于MNIST的两个新的视频文本成对数据集,并满足了评估。在这些数据集上进行的实验验证了法师的有效性并显示了TI2V任务的吸引力。模型和数据集的源代码即将推出。
translated by 谷歌翻译
互联网连接系统的指数增长产生了许多挑战,例如频谱短缺问题,需要有效的频谱共享(SS)解决方案。复杂和动态的SS系统可以接触不同的潜在安全性和隐私问题,需要保护机制是自适应,可靠和可扩展的。基于机器学习(ML)的方法经常提议解决这些问题。在本文中,我们对最近的基于ML的SS方法,最关键的安全问题和相应的防御机制提供了全面的调查。特别是,我们详细说明了用于提高SS通信系统的性能的最先进的方法,包括基于ML基于ML的基于的数据库辅助SS网络,ML基于基于的数据库辅助SS网络,包括基于ML的数据库辅助的SS网络,基于ML的LTE-U网络,基于ML的环境反向散射网络和其他基于ML的SS解决方案。我们还从物理层和基于ML算法的相应防御策略的安全问题,包括主要用户仿真(PUE)攻击,频谱感测数据伪造(SSDF)攻击,干扰攻击,窃听攻击和隐私问题。最后,还给出了对ML基于ML的开放挑战的广泛讨论。这种全面的审查旨在为探索新出现的ML的潜力提供越来越复杂的SS及其安全问题,提供基础和促进未来的研究。
translated by 谷歌翻译
datalogmtl是与公制时间逻辑的运算符的Datalog的扩展,近年来已得到重大关注。它是一种高度表现力的知识表示语言,非常适合基于时间本体论的查询回答和流处理的应用。然而,在DatalogMTL中的推理是高计算复杂性,使实施具有挑战性并阻碍其在应用中的采用。在本文中,我们提出了一种在Datalogmtl中的实际推理的新方法,其将效果(A.K.a.前进链接)与基于自动机的技术相结合。我们在称为流星的推理中实施了这种方法,并使用Lehigh大学基准的时间延伸和基于现实世界气象数据的基准来评估其性能。我们的实验表明,流星是一个可扩展系统,使得能够推理涉及数百万个时间事实的复杂的时间规则和数据集。
translated by 谷歌翻译
随着商业深度传感器和3D扫描仪的最近可用性和可承受能力,越来越多的3D(即RGBD,点云)数据集已被宣传以促进3D计算机视觉的研究。但是,现有的数据集覆盖相对较小的区域或具有有限的语义注释。对城市规模3D场景的细粒度理解仍处于起步阶段。在本文中,我们介绍了Sensaturban,一个城市规模的UAV摄影测量点云数据集,包括从三个英国城市收集的近30亿积分,占地7.6公里^ 2。 DataSet中的每个点已标记为具有细粒度的语义注释,导致数据集是上一个现有最大摄影测量点云数据集的三倍的三倍。除了诸如道路和植被等诸如道路和植被的常见类别之外,我们的数据集还包含包括轨道,桥梁和河流的城市水平类别。基于此数据集,我们进一步构建了基准,以评估最先进的分段算法的性能。特别是,我们提供了全面的分析,确定了限制城市规模点云理解的几个关键挑战。数据集可在http://point-cloud-analysis.cs.ox.ac.uk中获取。
translated by 谷歌翻译
我们开发了一个结构计量模型,以捕获人类评估人员在在线微贷款平台上的决策动态,并使用现实世界数据集估算模型参数。我们在人类评估人员的决策中发现了两种类型的性别,基于偏好的偏差和基于信念的偏差的偏见。两种类型的偏见都赞成女申请人。通过反事实模拟,我们量化性别偏见对贷款授予成果和公司福利的影响和借款人。我们的结果意味着,基于偏好的偏差的存在和基于信念的偏差的存在降低了公司的利润。当删除基于偏好的偏差时,该公司获得更多利润。当基于信仰的偏差被移除时,公司的利润也增加了。既增加借款人,尤其是男性借款人的批准概率,也会增加结果,最终偿还贷款。对于借款人,消除任何一个偏差都会降低信用风险评估中真正阳性率的性别差距。我们还从反事实模拟中培训了真实数据和数据的机器学习算法。我们比较这些算法所做的决定,以了解评估者的偏差是如何由算法继承的,并反映在基于机器的决策中。我们发现机器学习算法可以减轻基于偏好的偏差和基于信念的偏差。
translated by 谷歌翻译
从非结构化的3D点云学习密集点语义,虽然是一个逼真的问题,但在文献中探讨了逼真的问题。虽然现有的弱监督方法可以仅具有小数点的点级注释来有效地学习语义,但我们发现香草边界箱级注释也是大规模3D点云的语义分割信息。在本文中,我们介绍了一个神经结构,称为Box2Seg,以了解3D点云的点级语义,具有边界盒级监控。我们方法的关键是通过探索每个边界框内和外部的几何和拓扑结构来生成准确的伪标签。具体地,利用基于注意的自我训练(AST)技术和点类激活映射(PCAM)来估计伪标签。通过伪标签进行进一步培训并精制网络。在两个大型基准测试中的实验,包括S3DIS和Scannet,证明了该方法的竞争性能。特别是,所提出的网络可以培训,甚至是均匀的空缺边界箱级注释和子环级标签。
translated by 谷歌翻译
我们介绍了一种新颖的屏蔽图AutoEncoder(MGAE)框架,以在图形结构数据上执行有效的学习。从自我监督学习中欣识见,我们随机掩盖了大部分边缘,并在训练期间尝试重建这些缺失的边缘。 Mgae有两个核心设计。首先,我们发现掩蔽了输入图结构的高比率,例如70 \%$,产生一个非凡和有意义的自我监督任务,使下游应用程序受益。其次,我们使用图形神经网络(GNN)作为编码器,以在部分掩蔽的图表上执行消息传播。为了重建大量掩模边缘,提出了一种定制的互相关解码器。它可以捕获多粒度的锚边的头部和尾部节点之间的互相关。耦合这两种设计使MGAE能够有效且有效地培训。在多个开放数据集(Planetoid和OGB基准测试)上进行了广泛的实验,证明MGAE通常比链接预测和节点分类更好地表现优于最先进的无监督竞争对手。
translated by 谷歌翻译
我们介绍了一种新颖的骨干架构,提高特征表示的目标感知能力。具体地,已经观察到事实上框架简单地使用来自骨干网的输出来执行特征匹配,从备份目标本地化,没有从匹配模块到骨干网的直接反馈,尤其是浅层。更具体地,只有匹配模块可以直接访问目标信息(在参考帧中),而候选帧的表示学习对参考目标是盲目的。结果,浅级中的目标 - 无关干扰的累积效果可能降低更深层的特征质量。在本文中,我们通过在暹罗类似的骨干网(inbn)内进行多个分支 - 方面交互来从不同角度接近问题。在INBN的核心是一个通用交互建模器(GIM),其将参考图像的先前知识注入骨干网络的不同阶段,导致候选特征表示的更好的目标感知和鲁棒的牵引力,其计算成本具有可忽略的计算成本。所提出的GIM模块和INBN机制是一般的,适用于不同的骨干类型,包括CNN和变压器,以改进,如我们在多个基准上的广泛实验所证明的那样。特别是,CNN版本(基于Siamcar),分别在Lasot / TNL2K上改善了3.2 / 6.9的Suc绝对收益。变压器版本获取Lasot / TNL2K的SUC 25.7 / 52.0,与最近的艺术态度相提并论。代码和模型将被释放。
translated by 谷歌翻译
大多数当前图像标题模型通常从左到右生成标题。这种单向财产使它们只能利用过去的背景但不是未来的背景。尽管最近的基于改进的模型可以通过基于第一阶段的预检索或预先生成的标题在第二阶段生成新的标题来利用过去和未来的上下文,但是这些模型的解码器通常由两个网络组成〜(即第一阶段中的猎犬或标题器和第二阶段的炼油厂),其只能顺序地执行。在本文中,我们引入了一种用于图像标题的紧凑双向变压器模型,其可以在解码器并行执行解码器时隐式地和明确地利用双向上下文。具体地,通过将​​左右(L2R)和向右(R2L)紧密地耦合到单个紧凑型〜(即隐式)和可选地允许两个流的相互作用(即明确)的相互作用(即明确)来实现来实现。最终标题以句子级集合方式从L2R或R2L流中选择。我们对MSCOCO基准进行广泛的消融研究,并找到紧凑的架构,它用作隐式利用双向上下文的正则化,以及句子级集合比显式交互机制扮演更重要的角色。通过无缝地与单词级集合组合,句子级集合的效果进一步放大。我们进一步将传统的单流自我关键培训扩展到此架构下的双流程版本,并与非视语 - 预先预订模型相比,实现新的最先进导致。源代码可用于{\ color {magenta} \ url {https://github.com/yuanezhou/cbtrans}}。
translated by 谷歌翻译