执法和城市安全受到监视系统中的暴力事件的严重影响。尽管现代(智能)相机广泛可用且负担得起,但在大多数情况下,这种技术解决方案无能为力。此外,监测CCTV记录的人员经常显示出迟来的反应,从而导致对人和财产的灾难。因此,对迅速行动的暴力自动检测至关重要。拟议的解决方案使用了一种新颖的端到端深度学习视频视觉变压器(Vivit),可以在视频序列中熟练地辨别战斗,敌对运动和暴力事件。该研究提出了利用数据增强策略来克服较弱的电感偏见的缺点,同时在较小的培训数据集中训练视觉变压器。评估的结果随后可以发送给当地有关当局,可以分析捕获的视频。与最先进的(SOTA)相比,所提出的方法在某些具有挑战性的基准数据集上实现了吉祥的性能。
translated by 谷歌翻译
如果失去控制,骚乱和抗议可能会在一个国家造成严重破坏。我们已经看到了这一点,例如BLM运动,气候罢工,CAA运动等等,在很大程度上引起了破坏。我们的动机落后于创建此数据集是使用它来开发机器学习系统,可以让用户能够深入了解正在进行的趋势事件,并提醒他们可能导致国家中断的事件。如果任何事件开始失控,可以通过在升级之前监控它来处理和减轻它。此数据集收集已知已知造成的过去或正在进行的事件的推文,并将这些推文标记为1.我们还收集了被认为是非最终的并且将它们标记为0,以便它们也可用于培训分类系统。数据集包含94855个独特事件的记录和168706个独特事件的记录,从而给出了总数据集263561记录。我们从推文中提取多个功能,例如用户的跟随计数和用户的位置,以了解推文的影响和范围。此数据集可能在各种事件相关机器学习问题(如事件分类,事件识别等)中有用。
translated by 谷歌翻译
Cloud computing holds the promise of reduced costs through economies of scale. To realize this promise, cloud computing vendors typically solve sequential resource allocation problems, where customer workloads are packed on shared hardware. Virtual machines (VM) form the foundation of modern cloud computing as they help logically abstract user compute from shared physical infrastructure. Traditionally, VM packing problems are solved by predicting demand, followed by a Model Predictive Control (MPC) optimization over a future horizon. We introduce an approximate formulation of an industrial VM packing problem as an MILP with soft-constraints parameterized by the predictions. Recently, predict-and-optimize (PnO) was proposed for end-to-end training of prediction models by back-propagating the cost of decisions through the optimization problem. But, PnO is unable to scale to the large prediction horizons prevalent in cloud computing. To tackle this issue, we propose the Predict-and-Critic (PnC) framework that outperforms PnO with just a two-step horizon by leveraging reinforcement learning. PnC jointly trains a prediction model and a terminal Q function that approximates cost-to-go over a long horizon, by back-propagating the cost of decisions through the optimization problem \emph{and from the future}. The terminal Q function allows us to solve a much smaller two-step horizon optimization problem than the multi-step horizon necessary in PnO. We evaluate PnO and the PnC framework on two datasets, three workloads, and with disturbances not modeled in the optimization problem. We find that PnC significantly improves decision quality over PnO, even when the optimization problem is not a perfect representation of reality. We also find that hardening the soft constraints of the MILP and back-propagating through the constraints improves decision quality for both PnO and PnC.
translated by 谷歌翻译
Deep Reinforcement Learning (DRL) has the potential to be used for synthesizing feedback controllers (agents) for various complex systems with unknown dynamics. These systems are expected to satisfy diverse safety and liveness properties best captured using temporal logic. In RL, the reward function plays a crucial role in specifying the desired behaviour of these agents. However, the problem of designing the reward function for an RL agent to satisfy complex temporal logic specifications has received limited attention in the literature. To address this, we provide a systematic way of generating rewards in real-time by using the quantitative semantics of Signal Temporal Logic (STL), a widely used temporal logic to specify the behaviour of cyber-physical systems. We propose a new quantitative semantics for STL having several desirable properties, making it suitable for reward generation. We evaluate our STL-based reinforcement learning mechanism on several complex continuous control benchmarks and compare our STL semantics with those available in the literature in terms of their efficacy in synthesizing the controller agent. Experimental results establish our new semantics to be the most suitable for synthesizing feedback controllers for complex continuous dynamical systems through reinforcement learning.
translated by 谷歌翻译
Semantic navigation is necessary to deploy mobile robots in uncontrolled environments like our homes, schools, and hospitals. Many learning-based approaches have been proposed in response to the lack of semantic understanding of the classical pipeline for spatial navigation, which builds a geometric map using depth sensors and plans to reach point goals. Broadly, end-to-end learning approaches reactively map sensor inputs to actions with deep neural networks, while modular learning approaches enrich the classical pipeline with learning-based semantic sensing and exploration. But learned visual navigation policies have predominantly been evaluated in simulation. How well do different classes of methods work on a robot? We present a large-scale empirical study of semantic visual navigation methods comparing representative methods from classical, modular, and end-to-end learning approaches across six homes with no prior experience, maps, or instrumentation. We find that modular learning works well in the real world, attaining a 90% success rate. In contrast, end-to-end learning does not, dropping from 77% simulation to 23% real-world success rate due to a large image domain gap between simulation and reality. For practitioners, we show that modular learning is a reliable approach to navigate to objects: modularity and abstraction in policy design enable Sim-to-Real transfer. For researchers, we identify two key issues that prevent today's simulators from being reliable evaluation benchmarks - (A) a large Sim-to-Real gap in images and (B) a disconnect between simulation and real-world error modes - and propose concrete steps forward.
translated by 谷歌翻译
Training effective embodied AI agents often involves manual reward engineering, expert imitation, specialized components such as maps, or leveraging additional sensors for depth and localization. Another approach is to use neural architectures alongside self-supervised objectives which encourage better representation learning. In practice, there are few guarantees that these self-supervised objectives encode task-relevant information. We propose the Scene Graph Contrastive (SGC) loss, which uses scene graphs as general-purpose, training-only, supervisory signals. The SGC loss does away with explicit graph decoding and instead uses contrastive learning to align an agent's representation with a rich graphical encoding of its environment. The SGC loss is generally applicable, simple to implement, and encourages representations that encode objects' semantics, relationships, and history. Using the SGC loss, we attain significant gains on three embodied tasks: Object Navigation, Multi-Object Navigation, and Arm Point Navigation. Finally, we present studies and analyses which demonstrate the ability of our trained representation to encode semantic cues about the environment.
translated by 谷歌翻译
Controllable image synthesis with user scribbles has gained huge public interest with the recent advent of text-conditioned latent diffusion models. The user scribbles control the color composition while the text prompt provides control over the overall image semantics. However, we note that prior works in this direction suffer from an intrinsic domain shift problem, wherein the generated outputs often lack details and resemble simplistic representations of the target domain. In this paper, we propose a novel guided image synthesis framework, which addresses this problem by modeling the output image as the solution of a constrained optimization problem. We show that while computing an exact solution to the optimization is infeasible, an approximation of the same can be achieved while just requiring a single pass of the reverse diffusion process. Additionally, we show that by simply defining a cross-attention based correspondence between the input text tokens and the user stroke-painting, the user is also able to control the semantics of different painted regions without requiring any conditional training or finetuning. Human user study results show that the proposed approach outperforms the previous state-of-the-art by over 85.32% on the overall user satisfaction scores. Project page for our paper is available at https://1jsingh.github.io/gradop.
translated by 谷歌翻译
Deep Metric Learning (DML) is a prominent field in machine learning with extensive practical applications that concentrate on learning visual similarities. It is known that inputs such as Adversarial Examples (AXs), which follow a distribution different from that of clean data, result in false predictions from DML systems. This paper proposes MDProp, a framework to simultaneously improve the performance of DML models on clean data and inputs following multiple distributions. MDProp utilizes multi-distribution data through an AX generation process while leveraging disentangled learning through multiple batch normalization layers during the training of a DML model. MDProp is the first to generate feature space multi-targeted AXs to perform targeted regularization on the training model's denser embedding space regions, resulting in improved embedding space densities contributing to the improved generalization in the trained models. From a comprehensive experimental analysis, we show that MDProp results in up to 2.95% increased clean data Recall@1 scores and up to 2.12 times increased robustness against different input distributions compared to the conventional methods.
translated by 谷歌翻译
We consider the problem of embodied visual navigation given an image-goal (ImageNav) where an agent is initialized in an unfamiliar environment and tasked with navigating to a location 'described' by an image. Unlike related navigation tasks, ImageNav does not have a standardized task definition which makes comparison across methods difficult. Further, existing formulations have two problematic properties; (1) image-goals are sampled from random locations which can lead to ambiguity (e.g., looking at walls), and (2) image-goals match the camera specification and embodiment of the agent; this rigidity is limiting when considering user-driven downstream applications. We present the Instance-specific ImageNav task (InstanceImageNav) to address these limitations. Specifically, the goal image is 'focused' on some particular object instance in the scene and is taken with camera parameters independent of the agent. We instantiate InstanceImageNav in the Habitat Simulator using scenes from the Habitat-Matterport3D dataset (HM3D) and release a standardized benchmark to measure community progress.
translated by 谷歌翻译
Our education system comprises a series of curricula. For example, when we learn mathematics at school, we learn in order from addition, to multiplication, and later to integration. Delineating a curriculum for teaching either a human or a machine shares the underlying goal of maximizing the positive knowledge transfer from early to later tasks and minimizing forgetting of the early tasks. Here, we exhaustively surveyed the effect of curricula on existing continual learning algorithms in the class-incremental setting, where algorithms must learn classes one at a time from a continuous stream of data. We observed that across a breadth of possible class orders (curricula), curricula influence the retention of information and that this effect is not just a product of stochasticity. Further, as a primary effort toward automated curriculum design, we proposed a method capable of designing and ranking effective curricula based on inter-class feature similarities. We compared the predicted curricula against empirically determined effectual curricula and observed significant overlaps between the two. To support the study of a curriculum designer, we conducted a series of human psychophysics experiments and contributed a new Continual Learning benchmark in object recognition. We assessed the degree of agreement in effective curricula between humans and machines. Surprisingly, our curriculum designer successfully predicts an optimal set of curricula that is effective for human learning. There are many considerations in curriculum design, such as timely student feedback and learning with multiple modalities. Our study is the first attempt to set a standard framework for the community to tackle the problem of teaching humans and machines to learn to learn continuously.
translated by 谷歌翻译