确实,卷积神经网络(CNN)更合适。然而,固定内核大小使传统的CNN太具体,既不灵活也不有利于特征学习,从而影响分类准确性。不同内核大小网络的卷积可以通过捕获更多辨别和相关信息来克服这个问题。鉴于此,所提出的解决方案旨在将3D和2D成立网的核心思想与促进混合方案中的HSIC CNN性能提升。生成的\ Textit {注意融合混合网络}(AFNET)基于三个关注融合的并行混合子网,每个块中的不同内核使用高级功能,以增强最终的地面图。简而言之,AFNET能够选择性地过滤滤除对分类至关重要的辨别特征。与最先进的模型相比,HSI数据集的几次测试为AFNET提供了竞争力的结果。拟议的管道实现,实际上,印度松树的总体准确性为97 \%,博茨瓦纳100 \%,帕尔茨大学,帕维亚中心和萨利纳斯数据集的99 \%。
translated by 谷歌翻译
人类思想的知识呈现了二元矢量/网络性质。作为矢量的建模词是自然语言处理的关键,而单词关联网络可以映射语义记忆的性质。我们通过引入具有丰富的多重词汇(FERMULEX)网络来调和跨语言学,心理学和计算机科学的这些范式 - 碎片化。这种新颖的框架合并网络和矢量特征中的结构相似之处,可以独立地组合或探索。相似之处模型语义/语法/语音方面的异构词关联。用多维特征嵌入的单词富集,包括频率,获取,长度和多义。这些方面使得前所未有的认知知识探索。通过童话数据,我们使用Fermulex网络在18至30个月之间将规范语言采集模拟1000个幼苗。相似之处和嵌入通过符合性捕获单一的妙语,通过距离和特征测量各种混合。符合性解除了频繁/多仪/短名词的语言内核和基本句子生产的动词密钥,支持最近在30个月内出现的儿童句法构建的证据。此内核对网络核心检测和特征群集是不可见的:它从单词的双向矢量/网络性质中出现。我们的定量分析揭示了早期学习中的两个关键策略。将单词获取作为随机散步在Fermulex拓扑上,我们突出了无统一填充交际发育库存(CDIS)。基于符合性的步行者可以准确(75%),精确(55%),并在CDIS中的早期学习的部分召回(34%)预测,为以前的实证发现和发育理论提供了定量支持。
translated by 谷歌翻译
AI的蓬勃发展提示建议,AI技术应该是“以人为本”。然而,没有明确的定义,对人工人工智能或短,HCAI的含义。本文旨在通过解决HCAI的一些基础方面来改善这种情况。为此,我们介绍了术语HCAI代理商,以指配备有AI组件的任何物理或软件计算代理,并与人类交互和/或协作。本文识别参与HCAI代理的五个主要概念组件:观察,要求,行动,解释和模型。我们看到HCAI代理的概念,以及其组件和功能,作为弥合人以人为本的AI技术和非技术讨论的一种方式。在本文中,我们专注于采用在人类存在的动态环境中运行的单一代理的情况分析。
translated by 谷歌翻译
如今机器学习(ML)技术在许多社交敏感的系统中广泛采用,因此需要仔细研究这些系统所采取的决策的公平性。已经提出了许多方法来解决,并确保没有针对个人或特定群体的偏见,这可能来自偏置训练数据集或算法设计。在这方面,我们提出了一种称为eifffel的公平强化方法:通过翻转叶片来强制森林中的公平,该叶片剥夺了基于树木的或基于叶片的后处理策略来重新制作给定森林的选定决策树的叶子。实验结果表明,我们的方法实现了用户定义的群体公平程度,而不会失去大量的准确性。
translated by 谷歌翻译
在本文中,我们批评传统上用于评估在对抗环境中部署的机器学习模型的性能的鲁棒性措施。为了减轻稳健性的局限性,我们介绍了一种称为弹性的新措施,我们专注于其验证。特别地,我们讨论如何通过将传统的稳定性验证技术与数据无关的稳定性分析组合来验证弹性,这鉴定了模型不改变其预测的特征空间的子集。然后,我们为决策树和决策树集合介绍了一个正式的数据无关稳定性分析,我们在实验上评估公共数据集,我们利用恢复力验证。我们的结果表明,在实践中,恢复力验证是有用和可行的,产生了对标准和强大决策树模型的更可靠的安全评估。
translated by 谷歌翻译
当在条件属性上以某种方式相关的实例时,发生预测问题的不一致不会遵循决策属性的相同关系。例如,在具有单调性约束的序数分类中,当在条件属性上占据另一个实例的实例已经分配给更糟糕的决策类时,会发生它。它通常出现在由不完全知识(缺少属性)或通过数据生成期间发生的随机效果引起的数据的扰动(在决策属性值的评估中的不稳定性)引起的数据中的扰动。可以使用符号方法如粗糙集理论等象征方法处理和涉及优化方法的统计/机器学习方法,处理相对于清晰的预购关系(表达实例之间的差异或实例之间的无漏能格)不一致。模糊粗糙集也可以被视为对模糊关系处理不一致的象征性方法。在本文中,我们介绍了一种新的机器学习方法,用于对模糊预订关系进行不一致处理。新颖的方法是由用于清脆关系的现有机器学习方法的激励。我们为IT提供统计基础,并开发可用于消除不一致的优化程序。本文还证明了重要的财产,并载有这些程序的教学例子。
translated by 谷歌翻译
诸如医学诊断的关键背景下的关键问题是决策系统采用的深度学习模型的可解释性。解释的人工智能(XAI)在试图解决这个问题。然而,通常XAI方法仅在通用分类器上进行测试,并且不代表诸如医学诊断等现实问题。在本文中,我们分析了对皮肤病变图像的案例研究,我们定制了一种现有的XAI方法,以解释能够识别不同类型的皮肤病变的深度学习模型。通过综合示例和皮肤病变的相反示例图像形成的解释,并为从业者提供一种突出负责分类决策的关键性状的方法。通过域专家,初学者和非熟练的人进行了一项调查,证明了解释的使用增加了自动决策系统的信任和信心。此外,解释器采用的潜在空间的分析推出了一些最常见的皮肤病变类是明显分开的。这种现象可以得出每个班级的内在特征,希望能够在解决人类专家的最常见的错误分类中提供支持。
translated by 谷歌翻译
本文探讨了超线性增长趋势的环境影响,从整体角度来看,跨越数据,算法和系统硬件。我们通过在行业规模机器学习用例中检查模型开发周期来表征AI计算的碳足迹,同时考虑系统硬件的生命周期。进一步迈出一步,我们捕获AI计算的操作和制造碳足迹,并为硬件 - 软件设计和尺度优化的结束分析以及如何帮助降低AI的整体碳足迹。根据行业经验和经验教训,我们分享关键挑战,并在AI的许多方面上绘制了重要的发展方向。我们希望本文提出的关键信息和见解能够激发社区以环保的方式推进AI领域。
translated by 谷歌翻译
Colorsseum是一种开放式和公开可用的大型无线无线测试,可通过虚拟化和软载波形和协议堆栈进行实验研究,在完全可编程的“白盒子”平台上。通过256最先进的软件定义的无线电和巨大的通道仿真器核心,罗马斗兽场几乎可以模拟任何方案,在各种部署和渠道条件下,可以在规模上进行设计,开发和测试解决方案。通过有限脉冲响应滤波器通过高保真FPGA的仿真再现这些罗马孔射频场景。过滤器模拟所需的无线通道的抽头,并将它们应用于无线电节点生成的信号,忠实地模拟现实世界无线环境的条件。在本文中,我们将罗马斗兽场介绍为测试楼,这是第一次向研究界开放。我们描述了罗马斗兽场的建筑及其实验和仿真能力。然后,我们通过示例性用例证明了罗马斗兽场对实验研究的有效性,包括频谱共享和无人空中车辆场景的普遍用途用例,包括普遍的无线技术(例如,蜂窝和Wi-Fi)。斗兽索斗兽场未来更新的路线图总结了这篇论文。
translated by 谷歌翻译