2022年,乌克兰遭受了入侵,随着时间的流逝和地理位置的急剧影响。本文研究了使用分析以及基于区域的网络模型对持续中断对交通行为的影响。该方法是一种数据驱动的方法,该方法利用了在进化算法框架内获得的旅行时间条件,该算法框架在基于流量分配的自动化过程中渗透了原始过程的需求值。由于实施的自动化,可以为多个城市近似众多的每日模型。本文与先前发表的核心方法的新颖性包括一项分析,以确保获得的数据合适,因为由于持续的破坏,某些数据源被禁用。此外,新颖性包括将分析与中断时间表的直接联系,以新的方式检查相互作用。最后,确定了特定的网络指标,这些指标特别适合概念化冲突中断对交通网络条件的影响。最终目的是建立过程,概念和分析,以促进快速量化冲突情景的交通影响的更广泛的活动。
translated by 谷歌翻译
从视觉感觉数据中控制人造代理是一项艰巨的任务。强化学习(RL)算法可以在这方面取得成功,但需要代理与环境之间进行大量相互作用。为了减轻该问题,无监督的RL建议采用自我监督的互动和学习,以更快地适应未来的任务。但是,目前的无监督策略是否可以改善概括能力,尤其是在视觉控制设置中。在这项工作中,我们为数据有效的视觉控制设计了有效的无监督RL策略。首先,我们表明,使用无监督的RL收集的数据预先训练的世界模型可以促进适应未来的任务。然后,我们与我们的混合计划者分析了一些设计选择,以有效地适应了代理的预训练组件,并在想象中学习和计划,并与我们的混合计划者一起使用,我们将其dub dyna-mpc进行了。通过结合一项大规模实证研究的发现,我们建立了一种方法,该方法强烈改善了无监督的RL基准测试的性能,需要20美元$ \ times $ $ $ $ $ \少于数据以符合监督方法的性能。该方法还表明了在现实词的RL基准测试上的稳健性能,暗示该方法概括为嘈杂的环境。
translated by 谷歌翻译
长期以来,Robotics一直是一个遍布复杂系统体系结构的领域,无论传统或基于学习的模块和联系都需要大量的人类专业知识和先验知识。受大型预训练语言模型的启发,这项工作引入了预先培训的通用表示范式,该范式可以作为给定机器人多个任务的起点。我们提出了感知性因果变压器(PACT),这是一种基于生成变压器的架构,旨在以自我监督的方式直接从机器人数据构建表示形式。通过对状态和行动的自动回归预测,我们的模型隐含地编码了特定机器人的动态和行为。我们的实验评估重点是移动药物的域,我们表明该机器人特定的表示可以作为单个起点,以实现不同的任务,例如安全导航,定位和映射。我们评估了两个形式:使用激光雷达传感器作为感知输入(MUSHR)的轮式机器人,以及使用第一人称RGB图像(栖息地)的模拟药物。我们表明,与训练单个模型的同时训练单个模型相比,对所有任务的单个模型进行训练,并且与独立培训单独的大型模型相当的性能,对每个任务的单个模型进行了可比的训练,则在较大的审计模型上进行了固定小型任务特异性网络,从而使性能明显提高。通过跨任务共享共同的优质表示,我们可以降低整体模型容量并加快此类系统的实时部署。
translated by 谷歌翻译
模拟逼真的传感器是自主系统数据生成的挑战,通常涉及精心手工的传感器设计,场景属性和物理建模。为了减轻这一点,我们引入了一条管道,用于对逼真的激光雷达传感器进行数据驱动的模拟。我们提出了一个模型,该模型可以在RGB图像和相应的LIDAR功能(例如Raydrop或每点强度)之间直接从真实数据集中进行映射。我们表明,我们的模型可以学会编码逼真的效果,例如透明表面上的掉落点或反射材料上的高强度回报。当应用于现成的模拟器软件提供的天真播放点云时,我们的模型通过根据场景的外观预测强度和删除点来增强数据,以匹配真实的激光雷达传感器。我们使用我们的技术来学习两个不同的LIDAR传感器的模型,并使用它们相应地改善模拟的LiDAR数据。通过车辆细分的示例任务,我们表明通过我们的技术增强模拟点云可以改善下游任务性能。
translated by 谷歌翻译
Stackelberg游戏模型,领导者致力于制定策略,而追随者最能做出响应,它发现了广泛的应用程序,特别是针对安全问题。在安全环境中,目标是为了保护某些资产,使领导者计算一个最佳策略。在许多这些应用程序中,追随者实用程序模型的参数尚不确定。分布式优化优化通过允许在可能的模型参数上进行分配来解决此问题,而该分布来自一组可能的分布。目的是最大程度地提高预期的效用,相对于最坏情况下的分布。我们启动了分配稳定模型的研究,以计算最佳策略。我们考虑了对追随者公用事业模型的不确定性的正常形式游戏的情况。我们的主要理论结果是表明,在各种不确定性模型中,始终存在分布稳定的stackelberg平衡。对于一组有限的追随者实用程序函数,我们提出了两种算法,用于计算使用数学程序的分布强烈的Stackelberg平衡(DRSSE)。接下来,在一般情况下,存在无限数量的可能的追随者实用程序功能,并且不确定性在有限支撑的名义分布周围由Wasserstein Ball表示,我们给出了一个增量的基于混合组合编程的算法来计算最佳的算法分配稳定的策略。实验证实了我们在经典的Stackelberg游戏中算法的障碍,这表明我们的进近范围扩展到中型游戏。
translated by 谷歌翻译
引入逻辑混淆是针对集成电路(IC)的多个硬件威胁的关键防御,包括反向工程(RE)和知识产权(IP)盗窃。逻辑混淆的有效性受到最近引入的布尔满意度(SAT)攻击及其变体的挑战。还提出了大量对策,以挫败SAT袭击。不论针对SAT攻击的实施防御,大型权力,性能和领域的开销是必不可少的。相比之下,我们提出了一种认知解决方案:基于神经网络的UNSAT子句翻译器Satconda,它会造成最小的区域和开销,同时以无法穿透的安全性保留原始功能。 SATCONDA与UNSAT子句生成器一起孵育,该生成器通过最小的扰动(例如包含一对逆变器或缓冲液)转换现有的结合性正常形式(CNF),或者根据提供的CNF添加新的轻巧UNSAT块。为了有效的Unsat子句生成,Satconda配备了多层神经网络,该网络首先了解特征(文字和条款)的依赖性,然后是一个长期 - 长期内存(LSTM)网络,以验证和回溯SAT-硬度,以更好地学习和翻译。我们拟议的Satconda在ISCAS85和ISCAS89基准上进行了评估,并被认为可以防御为硬件RE设计的多个最先进的SAT攻击。此外,我们还评估了针对Minisat,Lingeling和葡萄糖SAT求解器的拟议SATCONDAS经验性能,这些溶剂构成了许多现有的Deobfuscation SAT攻击。
translated by 谷歌翻译
转置卷积在许多深度学习应用中都表现出突出。但是,由于在每个行和列中的每个元素之后添加零之后,特征映射的大小增加,因此转置卷积层在计算范围内都在计算密集型。因此,在扩展的输入特征图上进行的卷积操作导致硬件资源的利用率不佳。不必要的乘法操作的主要原因是在输入特征映射中的预定位置处的零。我们提出了一种算法级优化技术,用于有效的转置卷积实施以解决这些问题。基于内核激活,我们将原始内核隔离为四个子内核。该方案可以减少内存需求和不必要的乘法。我们提出的方法是使用Kaggle网站上的Flower DataSet使用Titan X GPU(Intel Dual Core CPU)的$ 3.09(3.02)\ Times $ $更快的计算。此外,提出的优化方法可以推广到现有设备,而无需其他硬件要求。一个简单的深度学习模型,其中包含一个转齿卷积层来评估优化方法。它显示出使用具有Intel双核CPU的MNIST数据集的$ 2.2 \ times $ $更快的培训。
translated by 谷歌翻译
执法和城市安全受到监视系统中的暴力事件的严重影响。尽管现代(智能)相机广泛可用且负担得起,但在大多数情况下,这种技术解决方案无能为力。此外,监测CCTV记录的人员经常显示出迟来的反应,从而导致对人和财产的灾难。因此,对迅速行动的暴力自动检测至关重要。拟议的解决方案使用了一种新颖的端到端深度学习视频视觉变压器(Vivit),可以在视频序列中熟练地辨别战斗,敌对运动和暴力事件。该研究提出了利用数据增强策略来克服较弱的电感偏见的缺点,同时在较小的培训数据集中训练视觉变压器。评估的结果随后可以发送给当地有关当局,可以分析捕获的视频。与最先进的(SOTA)相比,所提出的方法在某些具有挑战性的基准数据集上实现了吉祥的性能。
translated by 谷歌翻译
最近的研究表明,X射线射线照相表现出比聚合酶链反应(PCR)检测更高的准确性。因此,将深度学习模型应用于X射线和放射线照相图像增加了确定COVID-19病例的速度和准确性。但是,由于健康保险的可移植性和问责制(HIPAA),医院由于隐私问题而不愿意共享患者数据。为了维持隐私,我们提出了不同的私人深度学习模型,以保护患者的私人信息。来自Kaggle网站的数据集用于评估用于COVID-19检测的设计模型。根据其最高测试精度选择了EditivedNet模型版本。将差异隐私约束注入到最佳模型中以评估性能。通过改变可训练的层,隐私损失以及每个样本中的限制信息来指出准确性。在微调过程中,我们获得了84 \%准确性,而隐私损失为10。
translated by 谷歌翻译
由于独特的驾驶特征,人类驾驶员具有独特的驾驶技术,知识和情感。驾驶员嗜睡一直是一个严重的问题,危害道路安全。因此,必须设计有效的嗜睡检测算法以绕过道路事故。杂项研究工作已经解决了检测异常的人类驾驶员行为的问题,以通过计算机视觉技术检查驾驶员和汽车动力学的正面面孔。尽管如此,常规方法仍无法捕获复杂的驾驶员行为特征。但是,以深度学习体系结构的起源,还进行了大量研究,以分析和识别使用神经网络算法的驾驶员的嗜睡。本文介绍了一个基于视觉变形金刚和Yolov5架构的新颖框架,以实现驾驶员嗜睡的识别。提出了定制的Yolov5预训练的结构,以提取面部提取,目的是提取感兴趣的区域(ROI)。由于以前的体系结构的局限性,本文引入了视觉变压器进行二进制图像分类,该二进制图像分类在公共数据集UTA-RLDD上经过训练和验证。该模型分别达到了96.2 \%和97.4 \%的培训和验证精度。为了进行进一步的评估,在各种光明情况下的39名参与者的自定义数据集上测试了拟议的框架,并获得了95.5 \%的准确性。进行的实验揭示了我们在智能运输系统中实用应用框架的重要潜力。
translated by 谷歌翻译