信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
深度估计是在机器人手术和腹腔镜成像系统中进行图像引导干预的关键步骤。由于对于腹腔镜图像数据很难获得人均深度地面真相,因此很少将监督深度估计应用于手术应用。作为替代方案,已经引入了仅使用同步的立体图像对来训练深度估计器。但是,最近的工作集中在2D中的左右一致性上,而忽略了现实世界坐标中对象的宝贵固有3D信息,这意味着左右3D几何结构一致性尚未得到充分利用。为了克服这一限制,我们提出了M3Depth,这是一种自我监督的深度估计器,以利用3D几何结构信息隐藏在立体声对中,同时保持单眼推理。该方法还消除了在至少一个立体声图像中通过掩码看不见的边界区域的影响,以增强重叠区域中的左图和右图像之间的对应关系。密集实验表明,我们的方法在公共数据集和新获取的数据集上的以前的自我监督方法都大大优先,这表明在不同的样品和腹腔镜上都有良好的概括。
translated by 谷歌翻译
拓扑不平衡是由标记节点的不均匀拓扑位置引起的一个特异性不平衡问题,它大大损害了GNN的性能。什么拓扑不平衡意味着如何衡量其对图形学习的影响。在本文中,从全球视图中,我们对监督信息分布的全球视图提供了对拓扑 - 不平衡的新理解,从不足和过度划分的角度来看,这激发了两个定量指标作为测量。鉴于我们的分析,我们提出了一个新颖的位置感知的图形结构学习框架,该框架名为柔和,该框架直接优化了信息传播路径并解决了本质上解决拓扑 - 不平衡问题。我们的关键见解是增强同一类中节点的连接性,以获取更多的监督信息,从而减轻不足和过度的现象。具体而言,我们设计了一个基于锚的位置编码机制,该机制可以更好地结合相对拓扑位置并通过最大化标签影响来增强类内部电感偏置。我们进一步提出了作为边缘权重的阶级冲突度量,这有利于不同节点类别的分离。广泛的实验表明,在不同的数据注释方案中增强GNNS的功率方面,柔和的能力具有较高的潜力和适应性。
translated by 谷歌翻译
在呼吸运动下重建肺部锥体束计算机断层扫描(CBCT)是一个长期的挑战。这项工作更进一步,以解决一个具有挑战性的设置,以重建仅来自单个} 3D CBCT采集的多相肺图像。为此,我们介绍了对观点或Regas的概述综合。 Regas提出了一种自我监督的方法,以合成不足的层析成像视图并减轻重建图像中的混叠伪像。该方法可以更好地估计相间变形矢量场(DVF),这些矢量场(DVF)用于增强无合成的直接观察结果的重建质量。为了解决高分辨率4D数据上深神经网络的庞大记忆成本,Regas引入了一种新颖的射线路径变换(RPT),该射线路径转换(RPT)允许分布式,可区分的远期投影。 REGA不需要其他量度尺寸,例如先前的扫描,空气流量或呼吸速度。我们的广泛实验表明,REGA在定量指标和视觉质量方面的表现明显优于可比的方法。
translated by 谷歌翻译
使用计算机视觉对间接费用的分析是一个问题,在学术文献中受到了很大的关注。在这个领域运行的大多数技术都非常专业,需要大型数据集的昂贵手动注释。这些问题通过开发更通用的框架来解决这些问题,并结合了表示学习的进步,该框架可以更灵活地分析具有有限标记数据的新图像类别。首先,根据动量对比机制创建了未标记的空中图像数据集的强大表示。随后,通过构建5个标记图像的准确分类器来专门用于不同的任务。从6000万个未标记的图像中,成功的低水平检测城市基础设施进化,体现了我们推进定量城市研究的巨大潜力。
translated by 谷歌翻译
变形攻击是不断影响深度识别系统的众多威胁之一。它包括从不同个体中选择两张面,并将它们融合到包含两者的身份信息的最终图像中。在这项工作中,我们提出了一个新颖的正规化术语,该术语考虑了两者中存在的身份信息,并促进了两个正交潜在媒介的创建。我们在FRLL数据集中评估了我们提出的方法(Orthomad),并在五个不同的数据集中培训时评估了模型的性能。我们以小的RESNET-18为骨干,我们实现了大多数实验的最新结果,而竞争性则在其他实验中结果。本文的代码将公开可用。
translated by 谷歌翻译
地震波的频域模拟在地震反演中起着重要作用,但在大型模型中仍然具有挑战性。作为有效的深度学习方法,最近提出的物理知识的神经网络(PINN)在解决广泛的偏微分方程(PDES)方面取得了成功的应用,并且在这方面仍然有改进的余地。例如,当PDE系数不平滑并描述结构复合介质时,PINN可能导致溶液不准确。在本文中,我们通过使用PINN而不是波方程来求解频域中的声学和Visco声学散射的场波方程,以消除源奇异性。我们首先说明,当在损失函数中未实现边界条件时,非平滑速度模型导致波场不准确。然后,我们在PINN的损耗函数中添加了完美匹配的层(PML)条件,并设计了二次神经网络,以克服PINN中非平滑模型的有害影响。我们表明,PML和二次神经元改善了结果和衰减,并讨论了这种改进的原因。我们还说明,在波场模拟中训练的网络可用于预先训练PDE-Coeff及时改变后另一个波场模拟的神经网络,并相应地提高收敛速度。当两次连续迭代或两个连续的实验之间的模型扰动时,这种预训练策略应在迭代全波形反转(FWI)和时置目标成像中找到应用。
translated by 谷歌翻译
本文介绍了基于2022年国际生物识别技术联合会议(IJCB 2022)举行的基于隐私感知合成训练数据(SYN-MAD)的面部变形攻击检测的摘要。该竞赛吸引了来自学术界和行业的12个参与团队,并在11个不同的国家 /地区举行。最后,参与团队提交了七个有效的意见书,并由组织者进行评估。竞争是为了介绍和吸引解决方案的解决方案,这些解决方案涉及检测面部变形攻击的同时,同时出于道德和法律原因保护人们的隐私。为了确保这一点,培训数据仅限于组织者提供的合成数据。提交的解决方案提出了创新,导致在许多实验环境中表现优于所考虑的基线。评估基准现在可在以下网址获得:https://github.com/marcohuber/syn-mad-2022。
translated by 谷歌翻译
多实施学习(MIL)被广泛用于对病理整体幻灯片图像(WSIS)的计算机辅助解释,以解决缺乏像素或贴片的注释。通常,这种方法直接应用“自然图像驱动”的MIL算法,该算法忽略了WSIS的多尺度(即金字塔)性质。现成的MIL算法通常部署在单个WSIS(例如20x放大倍率)上,而人类病理学家通常以多尺度的方式汇总全球和局部模式(例如,通过放大不同大型)。在这项研究中,我们提出了一种新型的跨尺度注意机制,以明确地将尺度间相互作用汇总到单个MIL网络的克罗恩病(CD)(CD),这是炎症性肠病的一种形式。本文的贡献是两个方面:(1)提出了一种跨尺度注意机制,以从不同分辨率的多尺度相互作用汇总特征; (2)生成差异多尺度注意的可视化,以定位可解释的病变模式。通过训练来自20名CD患者的约250,000 H&E染色的上升结肠(AC)斑块,在不同尺度上训练30个健康对照样品,我们的方法在曲线下(AUC)得分为0.8924,与基线模型相比达到0.8924。官方实施可在https://github.com/hrlblab/cs-mil上公开获得。
translated by 谷歌翻译
本文介绍了一个测试台,以研究表现出群体智能的无人机(UAV)的分布式传感问题。几种智能城市应用程序,例如运输和灾难响应,需要通过一群智能和合作的无人机有效地收集传感器数据。事实证明,对于系统和严格研究而没有损害规模,现实主义和外部有效性,这通常被证明太复杂且昂贵。借助拟议的测试床,本文设置了一个垫脚石,以在小实验室空间内模仿,源自经验数据和仿真模型的大型感应区域。在此感应地图上,一群低成本的无人机可以飞行,从而可以研究各种问题,例如能源消耗,充电控制,导航和避免碰撞。分散的多代理集体学习算法(EPO)适用于无人机群智能以及对功耗测量的评估提供了概念验证,并验证了拟议的测试台的准确性。
translated by 谷歌翻译