人类广泛利用视觉和触摸作为互补的感官,视觉提供有关场景的全球信息,并在操纵过程中触摸当地信息而不会受到阻塞。在这项工作中,我们提出了一个新颖的框架,用于以一种自我监督的方式学习多任务视觉执行表示。我们设计了一种机制,该机制使机器人能够自主收集空间对齐的视觉和触觉数据,这是下游任务的关键属性。然后,我们使用交叉模式对比损失训练视觉和触觉编码器将这些配对的感觉输入嵌入共享潜在空间中。对学习的表示形式进行评估,而无需对5个感知和控制任务进行微调,涉及可变形表面:触觉分类,接触定位,异常检测(例如,手术幻影肿瘤触诊),触觉搜索,例如,视觉疑问(例如,在遮挡的情况下,都可以从视觉询问中进行触觉搜索),以及沿布边缘和电缆的触觉伺服。博学的表示形式在毛巾功能分类上达到了80%的成功率,手术材料中异常检测的平均成功率为73%,视觉引导触觉搜索的平均成功率和87.8%的平均伺服距离沿电缆和服装的平均伺服距离为87.8%。接缝。这些结果表明,学习的表示形式的灵活性,并朝着对机器人控制的任务不合时宜的视觉表达表示迈出了一步。
translated by 谷歌翻译
模拟到现实的转移已成为一种流行且非常成功的方法,用于培训各种任务的机器人控制政策。但是,确定在模拟中训练的政策何时准备将其转移到物理世界通常是一个挑战。部署经过很少的模拟数据训练的策略可能会导致物理硬件的不可靠和危险行为。另一方面,模拟中的过度训练会导致策略过度拟合模拟器的视觉外观和动力学。在这项工作中,我们研究了自动确定在模拟中训练的策略何时可以可靠地转移到物理机器人的策略。我们在机器人织物操纵的背景下专门研究了这些思想,因为成功建模织物的动力学和视觉外观的困难,成功的SIM2Real转移尤其具有挑战性。导致织物平滑任务表明我们的切换标准与实际的性能很好地相关。特别是,我们基于信心的切换标准在培训总预算的55-60%之内达到了87.2-93.7%的平均最终面料覆盖率。有关代码和补充材料,请参见https://tinyurl.com/lsc-case。
translated by 谷歌翻译
机器人舰队的商业和工业部署在处决期间通常会落在遥远的人类遥控者身上,当时机器人处于危险之中或无法取得任务进展。通过持续学习,随着时间的推移,从偏远人类的干预措施也可以用来改善机器人机队控制政策。一个核心问题是如何有效地将人类关注分配给单个机器人。先前的工作在单机器人的单人类设置中解决了这一点。我们正式化了交互式车队学习(IFL)设置,其中多个机器人可以交互查询并向多个人类主管学习。我们提出了一个完全实施的开源IFL基准套件,以评估IFL算法的GPU加速ISAAC健身环境。我们提出了Fleet-Dagger,这是一个IFL算法的家庭,并将一种新颖的Fleet Dagger算法与模拟中的4个基准进行了比较。我们还使用4个ABB Yumi机器人臂进行了1000个物理块式实验试验。实验表明,人类向机器人的分配显着影响机器人车队的性能,并且我们的算法比基线的算法获得了人类努力回报的8.8倍。有关代码,视频和补充材料,请参见https://tinyurl.com/fleet-dagger。
translated by 谷歌翻译
We consider the problem of estimating a multivariate function $f_0$ of bounded variation (BV), from noisy observations $y_i = f_0(x_i) + z_i$ made at random design points $x_i \in \mathbb{R}^d$, $i=1,\ldots,n$. We study an estimator that forms the Voronoi diagram of the design points, and then solves an optimization problem that regularizes according to a certain discrete notion of total variation (TV): the sum of weighted absolute differences of parameters $\theta_i,\theta_j$ (which estimate the function values $f_0(x_i),f_0(x_j)$) at all neighboring cells $i,j$ in the Voronoi diagram. This is seen to be equivalent to a variational optimization problem that regularizes according to the usual continuum (measure-theoretic) notion of TV, once we restrict the domain to functions that are piecewise constant over the Voronoi diagram. The regression estimator under consideration hence performs (shrunken) local averaging over adaptively formed unions of Voronoi cells, and we refer to it as the Voronoigram, following the ideas in Koenker (2005), and drawing inspiration from Tukey's regressogram (Tukey, 1961). Our contributions in this paper span both the conceptual and theoretical frontiers: we discuss some of the unique properties of the Voronoigram in comparison to TV-regularized estimators that use other graph-based discretizations; we derive the asymptotic limit of the Voronoi TV functional; and we prove that the Voronoigram is minimax rate optimal (up to log factors) for estimating BV functions that are essentially bounded.
translated by 谷歌翻译
In this work, we introduce a hypergraph representation learning framework called Hypergraph Neural Networks (HNN) that jointly learns hyperedge embeddings along with a set of hyperedge-dependent embeddings for each node in the hypergraph. HNN derives multiple embeddings per node in the hypergraph where each embedding for a node is dependent on a specific hyperedge of that node. Notably, HNN is accurate, data-efficient, flexible with many interchangeable components, and useful for a wide range of hypergraph learning tasks. We evaluate the effectiveness of the HNN framework for hyperedge prediction and hypergraph node classification. We find that HNN achieves an overall mean gain of 7.72% and 11.37% across all baseline models and graphs for hyperedge prediction and hypergraph node classification, respectively.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have become increasingly important in recent years due to their state-of-the-art performance on many important downstream applications. Existing GNNs have mostly focused on learning a single node representation, despite that a node often exhibits polysemous behavior in different contexts. In this work, we develop a persona-based graph neural network framework called PersonaSAGE that learns multiple persona-based embeddings for each node in the graph. Such disentangled representations are more interpretable and useful than a single embedding. Furthermore, PersonaSAGE learns the appropriate set of persona embeddings for each node in the graph, and every node can have a different number of assigned persona embeddings. The framework is flexible enough and the general design helps in the wide applicability of the learned embeddings to suit the domain. We utilize publicly available benchmark datasets to evaluate our approach and against a variety of baselines. The experiments demonstrate the effectiveness of PersonaSAGE for a variety of important tasks including link prediction where we achieve an average gain of 15% while remaining competitive for node classification. Finally, we also demonstrate the utility of PersonaSAGE with a case study for personalized recommendation of different entity types in a data management platform.
translated by 谷歌翻译
Traditionally, data analysis and theory have been viewed as separate disciplines, each feeding into fundamentally different types of models. Modern deep learning technology is beginning to unify these two disciplines and will produce a new class of predictively powerful space weather models that combine the physical insights gained by data and theory. We call on NASA to invest in the research and infrastructure necessary for the heliophysics' community to take advantage of these advances.
translated by 谷歌翻译
Learning fair graph representations for downstream applications is becoming increasingly important, but existing work has mostly focused on improving fairness at the global level by either modifying the graph structure or objective function without taking into account the local neighborhood of a node. In this work, we formally introduce the notion of neighborhood fairness and develop a computational framework for learning such locally fair embeddings. We argue that the notion of neighborhood fairness is more appropriate since GNN-based models operate at the local neighborhood level of a node. Our neighborhood fairness framework has two main components that are flexible for learning fair graph representations from arbitrary data: the first aims to construct fair neighborhoods for any arbitrary node in a graph and the second enables adaption of these fair neighborhoods to better capture certain application or data-dependent constraints, such as allowing neighborhoods to be more biased towards certain attributes or neighbors in the graph.Furthermore, while link prediction has been extensively studied, we are the first to investigate the graph representation learning task of fair link classification. We demonstrate the effectiveness of the proposed neighborhood fairness framework for a variety of graph machine learning tasks including fair link prediction, link classification, and learning fair graph embeddings. Notably, our approach achieves not only better fairness but also increases the accuracy in the majority of cases across a wide variety of graphs, problem settings, and metrics.
translated by 谷歌翻译
Climate change has increased the intensity, frequency, and duration of extreme weather events and natural disasters across the world. While the increased data on natural disasters improves the scope of machine learning (ML) in this field, progress is relatively slow. One bottleneck is the lack of benchmark datasets that would allow ML researchers to quantify their progress against a standard metric. The objective of this short paper is to explore the state of benchmark datasets for ML tasks related to natural disasters, categorizing them according to the disaster management cycle. We compile a list of existing benchmark datasets introduced in the past five years. We propose a web platform - NADBenchmarks - where researchers can search for benchmark datasets for natural disasters, and we develop a preliminary version of such a platform using our compiled list. This paper is intended to aid researchers in finding benchmark datasets to train their ML models on, and provide general directions for topics where they can contribute new benchmark datasets.
translated by 谷歌翻译
We introduce a language generation task grounded in a popular video game environment. KNUDGE (KNowledge Constrained User-NPC Dialogue GEneration) involves generating dialogue trees conditioned on an ontology captured in natural language passages providing quest and entity specifications. KNUDGE is constructed from side quest dialogues drawn directly from game data of Obsidian Entertainment's The Outer Worlds, leading to real-world complexities in generation: (1) dialogues are branching trees as opposed to linear chains of utterances; (2) utterances must remain faithful to the game lore--character personas, backstories, and entity relationships; and (3) a dialogue must accurately reveal new quest-related details to the human player. We report results for supervised and in-context learning techniques, finding there is significant room for future work on creating realistic game-quality dialogues.
translated by 谷歌翻译