AI / Compling在Scale是一个难题,特别是在医疗保健环境中。我们概述了要求,规划和实施选择,以及导致我们安全的研究计算平台,埃森医疗计算平台(EMCP)的实施的指导原则,与德国主要医院隶属。遵从性,数据隐私和可用性是系统的不可变的要求。我们将讨论我们的计算飞地的功能,我们将为希望采用类似设置的团体提供我们的配方。
translated by 谷歌翻译
我们呈现Nureality,一个虚拟现实'VR'环境,旨在测试车辆行为在城市交叉路口自主车辆和行人之间的相互作用中沟通意图的效果。在这个项目中,我们专注于表达行为作为行人的手段,即易于认识到AV运动的潜在意图。 VR是用于测试这些情况的理想工具,因为它可以被沉浸,并将受试者放入这些潜在的危险情景中而没有风险。 Nureality提供了一种新颖的和沉浸式虚拟现实环境,包括众多视觉细节(道路和建筑纹理,停放的汽车,摇曳的树肢)以及听觉细节(鸟儿唧唧喳喳,距离距离的汽车)。在这些文件中,我们呈现Nureality环境,其10个独特的车辆行为场景,以及每个场景的虚幻引擎和Autodesk Maya源文件。这些文件在www.nureality.org上公开发布为开源,以支持学术界,研究临界公平互动。
translated by 谷歌翻译
天文源脱模是将各个恒星或星系(来源)的贡献分离到由多个可能重叠源的图像的贡献。天文源显示出广泛的尺寸和亮度,并且可以在图像中显示大量重叠。由于其高动态范围,低信噪比和非传统图像格式,天文成像数据可以进一步挑战现成的计算机视觉算法。这些挑战使源头令人垂直的天文研究,在这项工作中,我们介绍了一种称为部分归因实例分段的新方法,使得能够以对深度学习模型进行贸易的方式进行源检测和脱模。我们提供一种新颖的神经网络实现作为方法的演示。
translated by 谷歌翻译
有效的空间交通管理需要积极识别人造卫星。从观察到的数据中提取对象识别的当前方法需要空间分辨的图像,其限制对低地球轨道中的对象的标识。然而,大多数人造卫星在地球静止轨道上运行在距离的距离中,禁止基于地面的观察者解析空间信息。本文演示了一种物体识别解决方案,利用修改的残余卷积神经网络将远程不变光谱数据映射到对象标识。我们报告了模拟64级卫星问题超过80%的分类精度 - 即使在卫星正在进行恒定,随机重新定位的情况下。由这些结果驱动的天文观察活动,九级问题的精度为72%,平均每类的100个示例,按照模拟预期执行。我们展示了通过辍学,随机重量平均(SWA)和SWA集中的分层贝叶斯推断的应用,以测量空间交通管理中的分类不确定性 - 临界部件,其中日常决策昂贵的空间资产并承担地缘政治后果。
translated by 谷歌翻译
随着全球气候变化影响影响世界的影响,需要集体努力来减少温室气体排放。能源部门是气候变化的最大贡献者,许多努力集中在减少对碳源发电厂的依赖,并转向可再生能源,如太阳能。太阳能电池板位置的全面数据库对于协助分析师和政策制定者来说,在定义太阳能的进一步扩展方面的策略方面很重要。在本文中,我们专注于创建太阳能电池板的世界地图。我们识别给定地理区域内的太阳能电池板的位置和总表面积。我们使用深度学习方法来使用空中图像自动检测太阳能电池板位置及其表面积。该框架由使用具有语义分割模型的串联串联使用图像分类器的双分支模型组成的框架在我们创建的卫星图像的日数据集上培训。我们的作品提供了一种用于检测太阳能电池板的高效和可扩展的方法,实现分类的精度为0.96,并且对于分割性能,IOU分数为0.82。
translated by 谷歌翻译
我们研究了趋势过滤的多元版本,称为Kronecker趋势过滤或KTF,因为设计点以$ D $维度形成格子。 KTF是单变量趋势过滤的自然延伸(Steidl等,2006; Kim等人,2009; Tibshirani,2014),并通过最大限度地减少惩罚最小二乘问题,其罚款术语总和绝对(高阶)沿每个坐标方向估计参数的差异。相应的惩罚运算符可以编写单次趋势过滤惩罚运营商的Kronecker产品,因此名称Kronecker趋势过滤。等效,可以在$ \ ell_1 $ -penalized基础回归问题上查看KTF,其中基本功能是下降阶段函数的张量产品,是一个分段多项式(离散样条)基础,基于单变量趋势过滤。本文是Sadhanala等人的统一和延伸结果。 (2016,2017)。我们开发了一套完整的理论结果,描述了$ k \ grone 0 $和$ d \ geq 1 $的$ k ^ {\ mathrm {th}} $ over kronecker趋势过滤的行为。这揭示了许多有趣的现象,包括KTF在估计异构平滑的功能时KTF的优势,并且在$ d = 2(k + 1)$的相位过渡,一个边界过去(在高维对 - 光滑侧)线性泡沫不能完全保持一致。我们还利用Tibshirani(2020)的离散花键来利用最近的结果,特别是离散的花键插值结果,使我们能够将KTF估计扩展到恒定时间内的任何偏离晶格位置(与晶格数量的大小无关)。
translated by 谷歌翻译
设计具有高产和强可靠性的制造工艺依赖于罕见事件估计的有效方法。族记重要性分裂通过迭代选择和复制朝向罕见事件的实现来降低罕见事件概率估计的变化。当应用于需要修改后代实现的初始条件的确定性系统时,复制步骤很难。通常,将随机扰动应用于后代,以将它们的轨迹与父阶层分化。然而,这种随机扰动策略可能对某些系统有效,同时失败,防止概率估计的差异降低。该工作旨在使用诸如生成的对冲网络(GaN)的生成模型来解决这种限制,以产生与动态系统的吸引子一致的扰动。提出的GaN辅助重要性分裂方法(Ganisp)改善了所针对性的系统的方差减少。该方法的实现是在伴侣存储库中(https://github.com/nrel/ganisp)中的。
translated by 谷歌翻译
安全关键型应用程序要求控制器/政策能够保证安全高度信心。如果我们可以访问地面真实的系统动态,控制屏障功能是一种有用的工具,可以保证安全。在实践中,我们对系统动态的知识不准确,这可能导致不安全的行为导致的残余动力学。使用确定性机器学习模型学习剩余动态可以防止不安全的行为,但是当预测不完美时可能会失败。在这种情况下,概率学习方法,其预测的不确定性的原因可以有助于提供强大的安全利润。在这项工作中,我们使用高斯过程来模拟残余动力学的投影到控制屏障功能上。我们提出了一种新颖的优化程序,以产生安全控制,可以保证具有高概率的安全性。安全滤波器具有推理来自GP预测的不确定性的能力。我们通过SEGWAY和四轮车模拟的实验展示了这种方法的功效。与具有神经网络的确定性方法相比,我们所提出的概率方法能够显着降低安全违规的数量。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译