这项工作提出了基于眼闪烁频率的远程关注水平估计的可行性研究。我们首先提出了一种基于卷积神经网络(CNNS)的眼睛闪烁检测系统,对相关工程非常竞争。使用此探测器,我们通过在线会话期间通过实验评估眼睛眨眼率与学生的注意力水平之间的关系。实验框架是使用公共多模式数据库进行的用于眼睛眨眼检测和称为Mebal的注意力水平估计,包括来自38名学生的数据和倍数采集传感器,特别是i)提供时间信号的脑电图(EEG)频带从学生的认知信息和ii)RGB和NIR相机捕捉学生面部姿势。实现的结果表明眼睛闪烁频率与关注水平之间的反比相关性。在我们所提出的方法中使用该关系,称为ALEBK,用于估计注意力水平作为眼睛闪烁频率的倒数。我们的成果开设了新的研究线,以介绍这种技术的关注水平估计,以及这种行为生物识别基于面部分析的其他应用。
translated by 谷歌翻译