DBSCAN由于其简单性和实用性而被广泛用于许多科学和工程领域。但是,由于其高灵敏度参数,聚类结果的准确性在很大程度上取决于实践经验。在本文中,我们首先提出了一种新颖的深钢筋学习指导自动DBSCAN参数搜索框架,即DRL-DBSCAN。该框架通过将聚类环境视为马尔可夫决策过程来模拟调整参数搜索方向的过程,该过程旨在在没有手动帮助的情况下找到最佳的聚类参数。 DRL-DBSCAN使用弱监督的奖励培训策略网络,通过与群集进行交互来了解不同特征分布的最佳聚类参数搜索策略。此外,我们还提出了一个由数据规模驱动的递归搜索机制,以有效且可控制地处理大参数空间。基于拟议的四种工作模式,在五个人工和现实世界数据集上进行了广泛的实验。离线和在线任务的结果表明,DRL-DBSCCUN不仅始终如一地提高DBSCAN聚类精度高达26%和25%,而且可以稳定地找到具有较高计算效率的主要参数。该代码可在https://github.com/ringbdstack/drl-dbscan上找到。
translated by 谷歌翻译
图形离群值检测是一项具有许多应用程序的新兴但至关重要的机器学习任务。尽管近年来算法扩散,但缺乏标准和统一的绩效评估设置限制了它们在现实世界应用中的进步和使用。为了利用差距,我们(据我们所知)(据我们所知)第一个全面的无监督节点离群值检测基准为unod,并带有以下亮点:(1)评估骨架从经典矩阵分解到最新图形神经的骨架的14个方法网络; (2)在现实世界数据集上使用不同类型的注射异常值和自然异常值对方法性能进行基准测试; (3)通过在不同尺度的合成图上使用运行时和GPU存储器使用算法的效率和可扩展性。基于广泛的实验结果的分析,我们讨论了当前渠道方法的利弊,并指出了多个关键和有希望的未来研究方向。
translated by 谷歌翻译
时间序列数据出现在各种应用程序中,例如智能运输和环境监测。时间序列分析的基本问题之一是时间序列预测。尽管最近的深度时间序列预测方法取得了成功,但它们仍需要足够的历史价值观察才能进行准确的预测。换句话说,输出长度(或预测范围)与输入和输出长度之和的比率应足够低(例如,0.3)。随着比率的增加(例如,到0.8),预测准确性的不确定性显着增加。在本文中,我们从理论和经验上都表明,通过将相关时间序列检索作为参考文献可以有效地降低不确定性。在理论分析中,我们首先量化不确定性,并显示其与平方误差(MSE)的连接。然后,我们证明,带有参考的模型比没有参考的模型更容易学习,因为检索到的参考可能会降低不确定性。为了凭经验证明基于检索的时间序列预测模型的有效性,我们引入了一种简单而有效的两阶段方法,称为“保留”,该方法由关系检索和内容合成组成。我们还表明,可以轻松地适应时空时间序列和时间序列插补设置。最后,我们评估了现实世界数据集上的延迟,以证明其有效性。
translated by 谷歌翻译
高效用顺序模式采矿(HUSPM)是具有许多真实世界应用的知识发现和数据分析中的重要活动。在某些情况下,HUSPM无法提供出色的措施来预测会发生什么。高效用顺序规则挖掘(HUSRM)发现了高实用性和高置信顺序规则,从而使其可以解决HUSPM中的问题。所有现有的HUSRM算法旨在找到与现实不一致的,可能会产生假的HUSRS的高级序列顺序规则(HUSRS)。因此,在本文中,我们制定了高公用事业完全订购的顺序规则挖掘的问题,并提出了两种称为petalsr和totalsr+的新型算法,旨在识别所有高实用性完全订购的顺序规则(HTSRS)。 TotalSR创建了一个实用表,该表可以有效地计算前提支持和一个效用前缀总和列表,该列表可以计算序列中O(1)时间中的剩余实用程序。我们还引入了左侧的扩展策略,该策略可以利用反单调性属性来使用信心修剪策略。 TotalSr还可以在实用程序上限的修剪策略的帮助下大大减少搜索空间,从而避免更加有意义的计算。此外,TotalSr+使用辅助前期记录表来更有效地发现HTSR。最后,在真实和合成数据集上都有许多实验结果,表明topalsR比较少的修剪策略的算法要高得多,并且在运行时间和可伸缩性方面,topalsr+效率更高。
translated by 谷歌翻译
准确的车辆类型分类在智能运输系统中起重要作用。对于统治者而言,重要的是要了解道路状况,通常为交通灯控制系统的贡献,以相应地响应以减轻交通拥堵。新技术和全面数据源,例如航空照片和遥感数据,提供了更丰富,高维的信息。同样,由于深度神经网络技术的快速发展,基于图像的车辆分类方法可以在处理数据时更好地提取基本的客观特征。最近,已经提出了几种深度学习模型来解决该问题。但是,基于纯卷积的传统方法对全球信息提取有限制,而复杂的环境(例如恶劣的天气)严重限制了识别能力。为了在复杂环境下提高车辆类型的分类能力,本研究提出了一种新型连接的卷积变压器在变压器神经网络(密度TNT)框架中,通过堆叠密集连接的卷积网络(Densenet)和变压器(TNT)(TNT)(TNT)(TNT )层。部署了三个区域的数据和四个不同的天气条件以评估识别能力。实验发现,即使在严重的雾气天气条件下,我们提出的车辆分类模型的识别能力也很少。
translated by 谷歌翻译
速度控制预测是驾驶员行为分析中一个具有挑战性的问题,旨在预测驾驶员在控制车速(例如制动或加速度)中的未来行动。在本文中,我们尝试仅使用以自我为中心的视频数据来应对这一挑战,与使用第三人称视图数据或额外的车辆传感器数据(例如GPS或两者)的文献中的大多数作品相比。为此,我们提出了一个基于新型的图形卷积网络(GCN)网络,即Egospeed-net。我们的动机是,随着时间的推移,对象的位置变化可以为我们提供非常有用的线索,以预测未来的速度变化。我们首先使用完全连接的图形图将每个类的对象之间的空间关系建模,并在其上应用GCN进行特征提取。然后,我们利用一个长期的短期内存网络将每个类别的此类特征随着时间的流逝融合到矢量中,加入此类矢量并使用多层perceptron分类器预测速度控制动作。我们在本田研究所驾驶数据集上进行了广泛的实验,并证明了Egospeed-NET的出色性能。
translated by 谷歌翻译
轻巧的飞行时间(TOF)深度传感器很小,便宜,低能量,并且已在移动设备上大量部署在移动设备上,以进行自动对焦,障碍物检测等。但是,由于其特定的测量值(深度分布)在某个像素时的区域而不是深度值,并且分辨率极低,它们不足以用于需要高保真深度(例如3D重建)的应用。在本文中,我们提出了Deltar,这是一种新颖的方法,可以通过与颜色图像合作来赋予高分辨率和准确深度的能力。作为Deltar的核心,提出了一种用于深度分布的特征提取器,并提出了基于注意力的神经体系结构,以有效地从颜色和TOF域中融合信息。为了在现实世界中评估我们的系统,我们设计了一个数据收集设备,并提出了一种校准RGB摄像头和TOF传感器的新方法。实验表明,我们的方法比旨在使用商品级RGB-D传感器的PAR性能实现的现有框架比现有的框架产生更准确的深度。代码和数据可在https://zju3dv.github.io/deltar/上获得。
translated by 谷歌翻译
在本文中,我们为RSI(名为Superyolo)提出了一种准确而快速的小对象检测方法,该方法融合了多模式数据并通过利用辅助超级分辨率(SR)学习并考虑既有辅助的超级分辨率(SR)对象进行高分辨率(HR)对象检测检测准确性和计算成本。首先,我们通过删除焦点模块来保持人力资源特征并显着克服小物体缺失的误差来构建紧凑的基线。其次,我们利用像素级的多模式融合(MF)从各种数据中提取信息,以促进RSI中的小物体更合适和有效的功能。此外,我们设计了一个简单且灵活的SR分支来学习HR特征表示,可以区分具有低分辨率(LR)输入的庞大背景的小物体,从而进一步提高了检测准确性。此外,为避免引入其他计算,SR分支在推理阶段被丢弃,并且由于LR输入而减少了网络模型的计算。实验结果表明,在广泛使用的Vedai RS数据集上,Superyolo的精度为73.61%(在MAP50方面),比SOTA大型模型(例如Yolov5L,Yolov5X和RS设计的Yolors)高10%以上。同时,Superyolo的Gfolps和参数大小比Yolov5X少约18.1倍,4.2倍。我们提出的模型显示出与最新模型相比,具有良好的准确性速度权衡。该代码将在https://github.com/icey-zhang/superyolo上开放。
translated by 谷歌翻译
知识蒸馏是将知识从强大的教师转移到有效的学生模型的有效方法。理想情况下,我们希望老师越好,学生越好。但是,这种期望并不总是成真。通常,由于教师和学生之间的不可忽略的差距,更好的教师模型通过蒸馏导致不良学生。为了弥合差距,我们提出了一种渐进式蒸馏方法,以进行致密检索。产品由教师渐进式蒸馏和数据进行渐进的蒸馏组成,以逐步改善学生。我们对五个广泛使用的基准,MARCO通道,TREC Passage 19,TREC文档19,MARCO文档和自然问题进行了广泛的实验,其中POD在蒸馏方法中实现了密集检索的最新方法。代码和模型将发布。
translated by 谷歌翻译
变压器架构已成为广泛的自然语言处理〜(NLP)模型的基本要素。随着大型NLP模型的趋势,增加的内存和计算成本阻碍了其在资源有限设备上的有效部署。因此,变压器量化吸引了广泛的研究兴趣。最近的工作认识到结构化的离群值是量化性能的关键瓶颈。但是,他们提出的方法增加了开销的计算,仍然将异常值留在那里。为了从根本上解决这个问题,本文深入研究了异常值的固有诱因和重要性。我们发现$ \ boldsymbol \ gamma $ in LaiserNorm(ln)充当异常值的有罪放大器,而异常值的重要性差异很大,其中一些代币提供的一些异常值覆盖了大面积,但可以牢固地夹住一个大面积,但可以将其夹住,而没有负面影响。 。在这些发现的激励下,我们提出了一个异常抑制框架,其中包括两个组成部分:伽玛迁移和象征性的剪辑。伽马迁移将异常放大器迁移到等效转换中的后续模块,从而导致更量化的模型而没有任何额外的负担。令牌的剪辑利用了令牌范围的较大差异,并设计了代币的粗到精细管道,以有效的方式获得了具有最小的最终量化损失的剪辑范围。该框架有效地抑制了异常值,可以在插件模式下使用。广泛的实验证明,我们的框架超过了现有作品,并且首次将6位训练后的BERT量化量化推向完整精确度(FP)级别。我们的代码可在https://github.com/wimh966/outlier_suppression上找到。
translated by 谷歌翻译