建议制度,依靠历史观察数据来模仿用户和物品之间的复杂关系,取得了巨大的成功,在现实世界中取得了巨大的成功。选择偏见是现有的现有观测数据基于方法的最重要问题之一,其实际上是由多种类型的不观察室的暴露策略引起的(例如促销和假期效应)。虽然已经提出了各种方法来解决这个问题,但它们主要依赖于隐含的脱叠技术,但没有明确建立未观察的曝光策略。通过明确重建曝光策略(简称休息),我们将推荐问题正式化为反事实推理,并提出了脱叠的社会推荐方法。在休息时,我们假设项目的曝光由潜在曝光策略,用户和项目控制。基于上述生成过程,首先通过识别分析提供我们方法的理论保证。其次,在社交网络和项目的帮助下,我们采用了变分自动编码器来重建潜在的曝光策略。第三,我们通过利用回收的曝光策略制定基于反事实推理的建议算法。四个现实世界数据集的实验,包括三个已发布的数据集和一个私人微信官方帐户数据集,展示了几种最先进的方法的显着改进。
translated by 谷歌翻译
图表可以模拟实体之间的复杂交互,它在许多重要的应用程序中自然出现。这些应用程序通常可以投入到标准图形学习任务中,其中关键步骤是学习低维图表示。图形神经网络(GNN)目前是嵌入方法中最受欢迎的模型。然而,邻域聚合范例中的标准GNN患有区分\ EMPH {高阶}图形结构的有限辨别力,而不是\ EMPH {低位}结构。为了捕获高阶结构,研究人员求助于主题和开发的基于主题的GNN。然而,现有的基于主基的GNN仍然仍然遭受较少的辨别力的高阶结构。为了克服上述局限性,我们提出了一个新颖的框架,以更好地捕获高阶结构的新框架,铰接于我们所提出的主题冗余最小化操作员和注射主题组合的新颖框架。首先,MGNN生成一组节点表示W.R.T.每个主题。下一阶段是我们在图案中提出的冗余最小化,该主题在彼此相互比较并蒸馏出每个主题的特征。最后,MGNN通过组合来自不同图案的多个表示来执行节点表示的更新。特别地,为了增强鉴别的功率,MGNN利用重新注射功能来组合表示的函数w.r.t.不同的主题。我们进一步表明,我们的拟议体系结构增加了GNN的表现力,具有理论分析。我们展示了MGNN在节点分类和图形分类任务上的七个公共基准上表现出最先进的方法。
translated by 谷歌翻译
大多数现有的因果结构学习方法需要数据以独立且相同分布(i.i.d.),当数据来自不同环境时,通常无法保证。以前的一些努力在两个独立的阶段中尝试解决这个问题,即首次发现i.i.d.非i.i.d的集群。样品,然后学习来自不同组的因果结构。这种直接的解决方案忽略了两个阶段之间的内在连接,即聚类阶段,学习阶段应该被相同的因果机制引导。为此,我们提出了一个统一的因果关系结构学习(命名为CCSL)方法,用于来自非I.I.D的因果区。数据。该方法同时集成了以下两个任务:1)聚类对象具有相同的因果机制; 2)学习受试者样本的因果关系。具体而言,对于前者来说,我们基于因果结构的相似性为集群样本提供了与因果关系相关的中餐馆流程;对于后者,我们介绍了一种基于改性的基于改进的方法来学习因果结构。理论结果提供了线性非高斯假设下因果模型和聚类模型的识别。模拟和现实世界数据的实验结果进一步验证了所提出的方法的正确性和有效性。
translated by 谷歌翻译
顺序推荐旨在为特定时间戳在特定时间戳提供历史行为中为用户选择最合适的项目。现有方法通常根据像马尔可夫链等转换的方法模拟用户行为序列。然而,这些方法也隐含地假设用户在不考虑用户之间的影响而彼此独立。实际上,这种影响在序列推荐中发挥着重要作用,因为用户的行为容易受其他人的影响。因此,期望聚合用户行为和用户之间的影响,这些用户在时间上演化并涉及用户和项目的异构图。在本文中,我们纳入了动态用户项异构图,提出了一种新的顺序推荐框架。结果,可以考虑历史行为以及用户之间的影响。为此,我们首先将顺序建议形式正式确定估计时间动态异构图和用户行为序列的条件概率的问题。之后,我们利用条件随机字段来聚合异构图形和用户行为以进行概率估计,并采用伪似然方法来得出易行目标函数。最后,我们提供所提出的框架的可扩展和灵活的实现。三个现实世界数据集的实验结果不仅展示了我们所提出的方法的有效性,而且还提供了一些关于顺序推荐的有洞察力的发现。
translated by 谷歌翻译
Text-to-sql任务,旨在将问题的自然语言转化为SQL查询,最近引起了很多关注。 Text-to-SQL最具挑战性的问题之一是如何将培训的模型概括为未遵守的数据库模式,也称为跨域文本到SQL任务。关键在于(i)编码方法的概括性,以模拟问题和数据库模式和(ii)问题模式链接方法,以了解数据库模式中问题和表/列之间的单词之间的映射。专注于上述两个关键问题,我们提出了一个用于跨域文本到SQL的结构感知双图形聚合网络(Sadga)。在Sadga中,我们采用图形结构为自然语言问题和数据库模式提供统一的编码模型。基于所提出的统一建模,我们进一步设计了一个结构感知聚合方法,以了解问题图和架构图之间的映射。结构感知聚合方法具有全局图链接,本地图链接和双图聚合机制。我们不仅研究了我们的提案的表现,而且还在撰写本文时挑战挑战文本到SQL基准蜘蛛的第3位。
translated by 谷歌翻译
基于学习的边缘检测有很强地监督的是用像素 - 明智的注释进行了强烈监督,这是手动获取的乏味。我们研究了自我训练边缘检测问题,利用了未开发的大型未标记图像数据集。我们设计具有多层正规化和自学的自我监督框架。特别地,我们强加了一个一致性正则化,该正则化强制执行来自多个层中的每一个的输出,以对输入图像及其扰动的对应物一致。我们采用L0平滑作为“扰动”,以鼓励在自我监督学习集群假设之后展示展示突出边界的边缘预测。同时,通过伪标签进行多层监督,网络训练,该伪标签与罐头边缘初始化,然后通过网络迭代地改进,因为培训进行了。正规化和自我教学共同实现了精确和召回的良好平衡,导致对监督方法的显着提升,在目标数据集中轻质细化。此外,我们的方法展示了强大的交叉数据集普遍性。例如,与现有的方法相比,在看不见的数据集上测试时,OCS的ODS提高了4.8%和5.8%。
translated by 谷歌翻译
在本文中,我们专注于3D形式抽象和语义分析的两个任务。这与目前的方法形成对比,仅关注3D形状抽象或语义分析。此外,以前的方法难以产生实例级语义结果,其限制了它们的应用。我们提出了一种用于联合估计3D形式抽象和语义分析的新方法。我们的方法首先为3D形状产生许多3D语义候选区域;然后,我们采用这些候选者直接预测语义类别,并使用深卷积神经网络同时细化候选地区的参数。最后,我们设计一种融合预测结果并获得最终语义抽象的算法,该抽象被显示为对标准非最大抑制的改进。实验结果表明,我们的方法可以产生最先进的结果。此外,我们还发现我们的结果可以很容易地应用于实例级语义部分割和形状匹配。
translated by 谷歌翻译
青光眼是可能导致盲目的眼科疾病之一,早期检测和治疗非常重要。眼底图像和光学相干性断层扫描(OCT)图像均为广泛使用的诊断青光眼的方式。然而,现有的青光眼分级方法主要利用单一的方式,忽略眼底和OCT之间的互补信息。在本文中,我们提出了一个有效的多种式监督对比的对比学习框架,名为Corolla,用于青光眼分级。通过层分割以及厚度计算和投影,从原始OCT卷中提取视网膜厚度图,并用作更换的模态,导致更有效的计算,内存使用较少。鉴于医学图像样本的高结构和分布相似之处,我们采用了监督的对比学习,以提高模型的歧视力,更好地融合。此外,对成对的眼底图像和厚度图的特征级融合以提高诊断精度。在Gamma DataSet上,与最先进的方法相比,我们的Corolla框架达到了压倒性的青光眼分级性能。
translated by 谷歌翻译
近年来,围绕具有集成自动语音处理的计算机辅助解释工具的设计越来越多的研究以及受训人员和专业口译员的使用。本文讨论了这些工具的系统延迟的作用,并提出了一个实验的结果,该试验旨在调查在同时模当的解释器中认知的最大系统延迟。结果表明,口译员可以应对3秒的系统延迟,而在准确性和流畅性方面都没有对原始文本的再现产生的任何重大影响。该值高于可用的AI的CAI工具的典型延迟,并铺平了以更大的基于上下文的语言模型和更高延迟进行实验的方式。
translated by 谷歌翻译
无监督域适应(UDA)技术的最新进展在跨域计算机视觉任务中有巨大的成功,通过弥合域分布差距来增强数据驱动的深度学习架构的泛化能力。对于基于UDA的跨域对象检测方法,其中大多数通过对抗性学习策略引导域不变特征产生来缓解域偏差。然而,由于不稳定的对抗性培训过程,他们的域名鉴别器具有有限的分类能力。因此,它们引起的提取特征不能完全域不变,仍然包含域私有因素,使障碍物进一步缓解跨域差异。为了解决这个问题,我们设计一个域分离rcnn(DDF),以消除特定于检测任务学习的特定信息。我们的DDF方法促进了全局和本地阶段的功能解剖,分别具有全局三联脱离(GTD)模块和实例相似性解剖(ISD)模块。通过在四个基准UDA对象检测任务上表现出最先进的方法,对我们的DDF方法进行了宽阔的适用性。
translated by 谷歌翻译