事实证明,行为生物识别技术是有效的,可以防止身份盗用,并被视为用户友好的身份验证方法。文献中最受欢迎的特征之一是由于我们社会中计算机和移动设备的大量部署,击键动态。本文着重于改善自由文本方案的击键生物识别系统。由于不受控制的文本条件,用户的情绪和身体状态以及使用中的应用程序,这种情况的特征是非常具有挑战性的。为了克服这些缺点,在文献中提出了基于深度学习的方法,例如卷积神经网络(CNN)和经常性神经网络(RNN),表现优于传统的机器学习方法。但是,这些体系结构仍然需要进行审查和改进。据我们所知,这是第一个提出基于变压器的击键生物识别系统的研究。所提出的变压器体系结构在流行的AALTO移动击键数据库中仅使用5个注册会话实现了相等的错误率(EER)值,为3.84%,在文献中的大幅度优于其他最先进的方法。
translated by 谷歌翻译
增强隐私技术是实施基本数据保护原则的技术。关于生物识别识别,已经引入了不同类型的隐私增强技术来保护储存的生物特征识别数据,这些数据通常被归类为敏感。在这方面,已经提出了各种分类法和概念分类,并进行了标准化活动。但是,这些努力主要致力于某些隐私增强技术的子类别,因此缺乏概括。这项工作概述了统一框架中生物识别技术隐私技术的概念。在每个处理步骤中,详细介绍了现有概念之间的关键方面和差异。讨论了现有方法的基本属性和局限性,并与数据保护技术和原理有关。此外,提出了评估生物识别技术的隐私技术评估的场景和方法。本文是针对生物识别数据保护领域的进入点,并针对经验丰富的研究人员以及非专家。
translated by 谷歌翻译
本文对最近的ChildCI框架中提出的不同测试进行了全面分析,证明了其潜力可以更好地了解儿童的神经运动和随时间的认知发展,以及它们在其他研究领域的可能应用,例如电子学习。特别是,我们提出了一组与儿童与移动设备互动的运动和认知方面有关的100多个全球特征,其中一些是根据文献收集和改编的。此外,我们分析了拟议特征集的鲁棒性和判别能力,包括基于运动和认知行为的儿童年龄组检测任务的实验结果。在这项研究中考虑了两种不同的方案:i)单检验场景,ii)多测试场景。使用公开可用的childcidb_v1数据库(18个月至8岁的儿童超过400名儿童)实现了超过93%的精度,这证明了儿童年龄与与移动设备的互动方式之间的高度相关性。
translated by 谷歌翻译
可取消的生物识别性是指一组技术,其中生物识别输入在处理或存储前用键有意地转换。该转换是可重复的,可以实现后续生物特征比较。本文介绍了一种可消除生物识别性的新方案,旨在保护模板免受潜在攻击,适用于任何基于生物识别的识别系统。我们所提出的方案基于从变形随机生物识别信息获得的时变键。给出了面部生物识别技术的实验实施。结果证实,该方法能够在提高识别性能的同时抵抗泄漏攻击。
translated by 谷歌翻译
这项工作提出了两种统计方法,用于基于通用和用户依赖模型的击键生物识别数据的合成。两种方法在机器人检测任务上均经过验证,使用击键合成数据来更好地训练系统。我们的实验包括一个来自168,000名受试者的1.36亿击球事件的数据集。我们通过定性和定量实验分析了两种合成方法的性能。根据两个监督分类器(支持向量机和长期的短期内存网络)和一个包括人类和生成的样本在内的学习框架,考虑了不同的机器人探测器。我们的结果证明,所提出的统计方法能够生成现实的人类合成击键样品。此外,分类结果表明,在具有大型标记数据的情况下,可以高精度检测这些合成样品。但是,在几次学习方案中,它代表了一个重要的挑战。
translated by 谷歌翻译
反事实思维领域的解释机制是可解释人工智能(XAI)的广泛使用的范式,因为它们遵循一种自然的推理方式,即人类熟悉。但是,该领域的所有常见方法都是基于传达有关特征或特征的信息,这些信息对于AI的决定尤为重要。我们认为,为了充分理解决定,不仅需要有关相关功能的知识,而且对无关信息的意识也很大程度上有助于创建用户的AI系统心理模型。因此,我们介绍了一种解释AI系统的新方法。我们称之为另一个事实解释的方法是基于显示AI输入的无关特征的替代现实。通过这样做,用户直接看到输入数据的哪些特征可以随意更改而不会影响AI的决定。我们在广泛的用户研究中评估了我们的方法,表明它能够为参与者对AI的理解做出重大贡献。我们表明,与既定的反事实解释方法相比,改变的解释适合传达对AI推理不同方面的理解。
translated by 谷歌翻译
通常,地形几何形状是非平滑的,非线性的,非凸的,如果通过以机器人为中心的视觉单元感知,则似乎部分被遮住且嘈杂。这项工作介绍了能够实时处理上述问题的完整控制管道。我们制定了一个轨迹优化问题,该问题可以在基本姿势和立足点上共同优化,但要遵守高度图。为了避免收敛到不良的本地Optima,我们部署了逐步的优化技术。我们嵌入了一个紧凑的接触式自由稳定性标准,该标准与非平板地面公式兼容。直接搭配用作转录方法,导致一个非线性优化问题,可以在少于十毫秒内在线解决。为了在存在外部干扰的情况下增加鲁棒性,我们用动量观察者关闭跟踪环。我们的实验证明了爬楼梯,踏上垫脚石上的楼梯,并利用各种动态步态在缝隙上。
translated by 谷歌翻译
DEBS Grand Challenge(GC)是一项年度编程竞赛,向来自学术界和行业的从业人员开放。 GC 2022版的重点是Infront Financial Technology GmbH提供的大量tick数据的实时复杂事件处理。挑战的目的是有效计算特定趋势指标并检测这些指标中的模式,例如现实生活中的交易者使用的指标来决定在金融市场上购买或销售。用于基准测试的数据集交易数据包含来自阿姆斯特丹三个主要交易所(NL),巴黎(FR)和法兰克福AM(GER)的大约5500多个金融工具的2.89亿个tick事件。 2021年的整周。数据集可公开使用。除了正确性和绩效外,提交还必须明确专注于可重复性和实用性。因此,参与者必须满足特定的非功能要求,并被要求在开源平台上构建。本文介绍了所需的方案和数据集交易数据,定义了问题声明的查询,并解释了对评估平台挑战者的增强功能,该挑战者处理数据分布,动态订阅以及对提交的远程评估。
translated by 谷歌翻译
与今天使用的空中冲突检测和分辨率(CD \&R)工具(ATCO)使用的战术冲突检测和分辨率(CD \&R)相比,密集且复杂的空中交通情况需要更高的自动化水平。但是,空中交通管制(ATC)域(安全至关重要)需要操作员舒适地放弃控制的AI系统,从而确保运营完整性和自动化采用。实现该目标的两个主要因素是解决方案的质量和决策的透明度。本文建议使用在多构想环境中运行的图形卷积加强学习方法,每个代理(飞行)执行CD \&R任务,并与其他代理共同执行。我们表明,这种方法可以提供有关利益相关者利益(空中交通管制员和空域用户)的高质量解决方案,从而解决了运营透明度问题。
translated by 谷歌翻译
本文介绍了一种增强学习方法,以更好地概括有关工作店调度问题(JSP)的启发式调度规则。 JSP上的当前模型并不关注概括,尽管正如我们在这项工作中所显示的那样,这是对问题进行更好的启发式方法的关键。改善概括的一种众所周知的技术是使用课程学习(CL)学习日益复杂的实例。但是,正如文献中许多作品所表明的那样,在不同问题大小之间传递学习技能时,这种技术可能会遭受灾难性的遗忘。为了解决这个问题,我们引入了一种新颖的对抗性课程学习(ACL)策略,该策略在学习过程中动态调整了难度级别以重新审视最坏情况的实例。这项工作还提出了一个深度学习模型来解决JSP,这是e var的W.R.T.作业定义和尺寸不可能。对Taillard和Demirkol的实例进行了实验,表明所提出的方法显着改善了JSP上的最新模型。它的平均最佳差距从Taillard的实例中的平均最佳差距从19.35 \%降低到10.46 \%,而Demirkol的实例中的平均最佳差距从38.43 \%降低到18.85%。我们的实施可在线提供。
translated by 谷歌翻译