这项工作提出了两种统计方法,用于基于通用和用户依赖模型的击键生物识别数据的合成。两种方法在机器人检测任务上均经过验证,使用击键合成数据来更好地训练系统。我们的实验包括一个来自168,000名受试者的1.36亿击球事件的数据集。我们通过定性和定量实验分析了两种合成方法的性能。根据两个监督分类器(支持向量机和长期的短期内存网络)和一个包括人类和生成的样本在内的学习框架,考虑了不同的机器人探测器。我们的结果证明,所提出的统计方法能够生成现实的人类合成击键样品。此外,分类结果表明,在具有大型标记数据的情况下,可以高精度检测这些合成样品。但是,在几次学习方案中,它代表了一个重要的挑战。
translated by 谷歌翻译