增强隐私技术是实施基本数据保护原则的技术。关于生物识别识别,已经引入了不同类型的隐私增强技术来保护储存的生物特征识别数据,这些数据通常被归类为敏感。在这方面,已经提出了各种分类法和概念分类,并进行了标准化活动。但是,这些努力主要致力于某些隐私增强技术的子类别,因此缺乏概括。这项工作概述了统一框架中生物识别技术隐私技术的概念。在每个处理步骤中,详细介绍了现有概念之间的关键方面和差异。讨论了现有方法的基本属性和局限性,并与数据保护技术和原理有关。此外,提出了评估生物识别技术的隐私技术评估的场景和方法。本文是针对生物识别数据保护领域的进入点,并针对经验丰富的研究人员以及非专家。
translated by 谷歌翻译
这项工作提出了基于眼闪烁频率的远程关注水平估计的可行性研究。我们首先提出了一种基于卷积神经网络(CNNS)的眼睛闪烁检测系统,对相关工程非常竞争。使用此探测器,我们通过在线会话期间通过实验评估眼睛眨眼率与学生的注意力水平之间的关系。实验框架是使用公共多模式数据库进行的用于眼睛眨眼检测和称为Mebal的注意力水平估计,包括来自38名学生的数据和倍数采集传感器,特别是i)提供时间信号的脑电图(EEG)频带从学生的认知信息和ii)RGB和NIR相机捕捉学生面部姿势。实现的结果表明眼睛闪烁频率与关注水平之间的反比相关性。在我们所提出的方法中使用该关系,称为ALEBK,用于估计注意力水平作为眼睛闪烁频率的倒数。我们的成果开设了新的研究线,以介绍这种技术的关注水平估计,以及这种行为生物识别基于面部分析的其他应用。
translated by 谷歌翻译
通常,地形几何形状是非平滑的,非线性的,非凸的,如果通过以机器人为中心的视觉单元感知,则似乎部分被遮住且嘈杂。这项工作介绍了能够实时处理上述问题的完整控制管道。我们制定了一个轨迹优化问题,该问题可以在基本姿势和立足点上共同优化,但要遵守高度图。为了避免收敛到不良的本地Optima,我们部署了逐步的优化技术。我们嵌入了一个紧凑的接触式自由稳定性标准,该标准与非平板地面公式兼容。直接搭配用作转录方法,导致一个非线性优化问题,可以在少于十毫秒内在线解决。为了在存在外部干扰的情况下增加鲁棒性,我们用动量观察者关闭跟踪环。我们的实验证明了爬楼梯,踏上垫脚石上的楼梯,并利用各种动态步态在缝隙上。
translated by 谷歌翻译
DEBS Grand Challenge(GC)是一项年度编程竞赛,向来自学术界和行业的从业人员开放。 GC 2022版的重点是Infront Financial Technology GmbH提供的大量tick数据的实时复杂事件处理。挑战的目的是有效计算特定趋势指标并检测这些指标中的模式,例如现实生活中的交易者使用的指标来决定在金融市场上购买或销售。用于基准测试的数据集交易数据包含来自阿姆斯特丹三个主要交易所(NL),巴黎(FR)和法兰克福AM(GER)的大约5500多个金融工具的2.89亿个tick事件。 2021年的整周。数据集可公开使用。除了正确性和绩效外,提交还必须明确专注于可重复性和实用性。因此,参与者必须满足特定的非功能要求,并被要求在开源平台上构建。本文介绍了所需的方案和数据集交易数据,定义了问题声明的查询,并解释了对评估平台挑战者的增强功能,该挑战者处理数据分布,动态订阅以及对提交的远程评估。
translated by 谷歌翻译
与今天使用的空中冲突检测和分辨率(CD \&R)工具(ATCO)使用的战术冲突检测和分辨率(CD \&R)相比,密集且复杂的空中交通情况需要更高的自动化水平。但是,空中交通管制(ATC)域(安全至关重要)需要操作员舒适地放弃控制的AI系统,从而确保运营完整性和自动化采用。实现该目标的两个主要因素是解决方案的质量和决策的透明度。本文建议使用在多构想环境中运行的图形卷积加强学习方法,每个代理(飞行)执行CD \&R任务,并与其他代理共同执行。我们表明,这种方法可以提供有关利益相关者利益(空中交通管制员和空域用户)的高质量解决方案,从而解决了运营透明度问题。
translated by 谷歌翻译
本文介绍了一种增强学习方法,以更好地概括有关工作店调度问题(JSP)的启发式调度规则。 JSP上的当前模型并不关注概括,尽管正如我们在这项工作中所显示的那样,这是对问题进行更好的启发式方法的关键。改善概括的一种众所周知的技术是使用课程学习(CL)学习日益复杂的实例。但是,正如文献中许多作品所表明的那样,在不同问题大小之间传递学习技能时,这种技术可能会遭受灾难性的遗忘。为了解决这个问题,我们引入了一种新颖的对抗性课程学习(ACL)策略,该策略在学习过程中动态调整了难度级别以重新审视最坏情况的实例。这项工作还提出了一个深度学习模型来解决JSP,这是e var的W.R.T.作业定义和尺寸不可能。对Taillard和Demirkol的实例进行了实验,表明所提出的方法显着改善了JSP上的最新模型。它的平均最佳差距从Taillard的实例中的平均最佳差距从19.35 \%降低到10.46 \%,而Demirkol的实例中的平均最佳差距从38.43 \%降低到18.85%。我们的实施可在线提供。
translated by 谷歌翻译
切成薄片的距离(SW)是一种计算有效的,理论上是Wasserstein距离的替代方案。然而,关于切片的分布,其统计特性(超出统一度量)的文献很少。为了为这一研究带来新的贡献,我们利用了Pac-bayesian理论和SW实际取决于切片分布依赖的Gibbs风险的中心观察,而Pac-Bayesian的数量范围已经设计为表征。我们提供四种类型的结果:i)在我们称为自适应切片的距离距离的豆豆泛化范围,即针对任何切片的分布定义的距离,ii)学习切片分布的过程最大歧视性的SW,通过优化我们的Pac-bayesian边界,iii)关于如何通过我们的理论来解释所谓的分布分布切片的距离,以及我们发现的经验例证。
translated by 谷歌翻译
内容的离散和连续表示(例如,语言或图像)具有有趣的属性,以便通过机器的理解或推理此内容来探索或推理。该职位论文提出了我们关于离散和持续陈述的作用及其在深度学习领域的作用的意见。目前的神经网络模型计算连续值数据。信息被压缩成密集,分布式嵌入式。通过Stark对比,人类在他们的语言中使用离散符号。此类符号代表了来自共享上下文信息的含义的世界的压缩版本。此外,人工推理涉及在认知水平处符号操纵,这促进了抽象的推理,知识和理解的构成,泛化和高效学习。通过这些见解的动机,在本文中,我们认为,结合离散和持续的陈述及其处理对于构建展示一般情报形式的系统至关重要。我们建议并讨论了几个途径,可以在包含离散元件来结合两种类型的陈述的优点来改进当前神经网络。
translated by 谷歌翻译
通过利用深度学习来自动分类相机陷阱图像,生态学家可以更有效地监测生物多样性保护努力和气候变化对生态系统的影响。由于相机陷阱数据集的不平衡类分布,当前模型偏向于多数类。因此,他们为少数多数课程获得了良好的表现,而是许多少数阶级的表现不佳。我们使用两阶段培训来增加这些少数阶级的表现。我们培训,旁边是基线模型,四个模型,它在高度不平衡快照Serengeti数据集的子集上实现了不同版本的两阶段训练。我们的研究结果表明,两阶段培训可以提高许多少数群体课程的性能,对其他课程的性能有限。我们发现,基于多数欠采样的两阶段培训将等级特定的F1分数增加到3.0%。我们还发现,两阶段培训胜过仅使用过采样或欠采样的F1分数平均使用6.1%。最后,我们发现过度和欠采样的组合导致更好的性能,而不是单独使用它们。
translated by 谷歌翻译
现代机器人系统具有卓越的移动性和机械技能,使其适合在现实世界场景中使用,其中需要与重物和精确的操纵能力进行互动。例如,具有高有效载荷容量的腿机器人可用于灾害场景,以清除危险物质或携带受伤的人。因此,可以开发能够使复杂机器人能够准确地执行运动和操作任务的规划算法。此外,需要在线适应机制,需要新的未知环境。在这项工作中,我们强加了模型预测控制(MPC)产生的最佳状态输入轨迹满足机器人系统自适应控制中的Lyapunov函数标准。因此,我们将控制Lyapunov函数(CLF)提供的稳定性保证以及MPC在统一的自适应框架中提供的最优性,在机器人与未知对象的交互过程中产生改进的性能。我们验证了携带未建模有效载荷和拉重盒子的四足机器人的仿真和硬件测试中提出的方法。
translated by 谷歌翻译