深度估计在现有的基于学习的多视图立体声方法中解决了作为回归或分类问题。虽然这两种表示最近展示了它们的优异性能,但它们仍然具有明显的缺点,例如,由于间接学习成本量,回归方法往往会过度装备,并且由于其离散预测而不能直接推断出精确深度的分类方法。在本文中,我们提出了一种新的代表性,称为统一,统一回归和分类的优势。它可以直接限制等级的成本量,但也实现了像回归方法的子像素深度预测。为了挖掘统一的潜力,我们设计了一个名为统一焦点损失的新损失函数,这更加统一,合理地打击样本不平衡的挑战。结合这两个负担的模块,我们提出了一个粗略的框架,我们称之为UNIMVSNet。首先在DTU和坦克和寺庙和寺庙基准测试的结果验证了我们的模型不仅执行最佳,还具有最佳的概括能力。
translated by 谷歌翻译