深度神经网络是各种任务的强大预测因子。但是,它们不会直接捕捉不确定性。使用神经网络集合来量化不确定性与基于贝叶斯神经网络的方法具有竞争力,同时受益于更好的计算可扩展性。然而,神经网络的构建集合是一个具有挑战性的任务,因为除了为整个集合的每个成员选择正确的神经结构或超参数之外,还有增加训练每个模型的成本。我们提出了一种自动化方法,用于生成深神经网络的集合。我们的方法利用联合神经结构和封锁统计数据搜索来生成合奏。我们使用总方差定律来分解深度集成的预测方差,进入炼层(数据)和认知(模型)的不确定性。我们展示了AutodeUQ优于概率的概率BackProjagation,Monte Carlo辍学,深组合,无分配的集合以及多元回归基准的超集合方法。
translated by 谷歌翻译
风电场设计主要取决于风力涡轮机唤醒流向大气风条件的可变性,以及唤醒之间的相互作用。使用高保真度捕获唤醒流场的物理学模型是计算风电场的布局优化的计算非常昂贵,因此数据驱动的减少的订单模型可以代表模拟风电场的有效替代方案。在这项工作中,我们使用现实世界的光检测和测量(LIDAR)测量的风力涡轮机唤醒,用机器学习构建预测代理模型。具体而言,我们首先展示使用深度自动控制器来找到低维\ emph {潜在}空间,其给出了唤醒激光雷达测量的计算易逼近的近似。然后,我们学习使用深神经网络的参数空间和(潜在空间)唤醒流场之间的映射。此外,我们还展示了使用概率机器学习技术,即高斯过程建模,除了数据中的认知和炼拉内不确定性之外,学习参数空间潜空间映射。最后,为了应对培训大型数据集,我们展示了使用变分高斯过程模型,为大型数据集提供了传统的高斯工艺模型的传统高斯工艺模型。此外,我们介绍了主动学习以自适应地构建和改进传统的高斯过程模型预测能力。总的来说,我们发现我们的方法提供了风力涡轮机唤醒流场的准确近似,其可以以比具有基于高保真物理的模拟产生的级别更便宜的成本来查询。
translated by 谷歌翻译
尽管动态游戏为建模代理的互动提供了丰富的范式,但为现实世界应用程序解决这些游戏通常具有挑战性。许多现实的交互式设置涉及一般的非线性状态和输入约束,它们彼此之间的决策相结合。在这项工作中,我们使用约束的游戏理论框架开发了一个高效且快速的计划者,用于在受限设置中进行交互式计划。我们的关键见解是利用代理的目标和约束功能的特殊结构,这些功能在多代理交互中进行快速和可靠的计划。更确切地说,我们确定了代理成本功能的结构,在该结构下,由此产生的动态游戏是受约束潜在动态游戏的实例。受限的潜在动态游戏是一类游戏,而不是解决一组耦合的约束最佳控制问题,而是通过解决单个约束最佳控制问题来找到NASH平衡。这简化了限制的交互式轨迹计划。我们比较了涉及四个平面代理的导航设置中方法的性能,并表明我们的方法平均比最先进的速度快20倍。我们进一步在涉及一个四型和两个人的导航设置中对我们提出的方法提供了实验验证。
translated by 谷歌翻译
在本文中,我们解决了时尚电子商务(关于客户经验以及收入)的重要问题:颜色变体识别,即识别完全在其设计(或风格)中匹配的时尚产品,但仅限于不同的颜色。我们提出了一个通用的框架,它利用了深度视觉表现在其心中学习,以解决我们的时尚电子商务平台的问题。我们的框架可以通过手动获得的三胞胎形式的监控信号培训。但是,在时尚电子商务平台(例如我们的时尚电子商务平台)中,可以获得通常存在的整个大量数据的手动注释是不可行的。但是,对于我们的救援,有趣的是,我们观察到时尚电子商务中的这种关键问题也可以通过简单的彩色抖动的图像增强来解决,最近在对比的自我监督学习(SSL)文学中广泛欢迎,这是旨在的在不使用手动标签的情况下学习可视表示。这自然导致了我们思想的一个问题:我们可以利用我们的用例中的SSL,仍然对我们的监督框架获得了可比的表现吗?答案是,是的!因为,颜色变体时尚对象只不过是风格的表现,以不同的颜色,以及培训的模型,培训不变于颜色(有或没有监督),应该能够识别出来!这是本文进一步证明的,既有质量和定量,同时评估几种最先进的SSL技术,也提出了一种新方法。
translated by 谷歌翻译
自从37年和64年前构思了移动通信和人工智能以来,这是一个令人兴奋的旅程。虽然这两个领域独立地演变而来的通信和计算产业,但是快速收敛的5G和深度学习开始显着改变核心通信基础设施,网络管理和垂直应用。本文首先概述了早期移动通信和人工智能的个人路线图,当AI和移动通信开始汇聚时,集中在3G到5G中审查时代。关于电信人工智能,本文进一步详细介绍了移动通信生态系统中人工智能的进展。然后,该文件总结了电信生态系统中AI的分类以及各种国际电信标准化机构指定的进化路径。本文预测了电信人工智能的前瞻性路线图。符合3GPP和ITU-R的时间表5G&6G,本文进一步探讨了3GPP和奥兰路线之后的网络智能,经验和意图驱动的网络管理和操作,网络AI信令系统,智能中办事处的BSS,智能化由BSS和OSS融合驱动的客户体验管理和政策控制,从SLA到ELA的Evolution,以及垂直智能专用网络。本文的愿景结束了AI将重塑未来B5G或6G景观,我们需要枢转我们的研发,标准化和生态系统,以充分承担前所未有的机会。
translated by 谷歌翻译