了解场景是自主导航车辆的关键,以及在线将周围环境分段为移动和非移动物体的能力是这项任务的中央成分。通常,基于深度学习的方法用于执行移动对象分段(MOS)。然而,这些网络的性能强烈取决于标记培训数据的多样性和数量,可以获得昂贵的信息。在本文中,我们提出了一种自动数据标记管道,用于3D LIDAR数据,以节省广泛的手动标记工作,并通过自动生成标记的训练数据来提高现有的基于学习的MOS系统的性能。我们所提出的方法通过批量处理数据来实现数据。首先利用基于占用的动态对象拆除以粗略地检测可能的动态物体。其次,它提取了提案中的段,并使用卡尔曼滤波器跟踪它们。基于跟踪的轨迹,它标记了实际移动的物体,如驾驶汽车和行人。相反,非移动物体,例如,停放的汽车,灯,道路或建筑物被标记为静态。我们表明,这种方法允许我们高效地标记LIDAR数据,并将我们的结果与其他标签生成方法的结果进行比较。我们还使用自动生成的标签培训深度神经网络,并与在同一数据上的手动标签上接受过的手动标签的培训相比,实现了类似的性能,以及使用我们方法生成的标签的其他数据集时更好的性能。此外,我们使用不同的传感器评估我们在多个数据集上的方法,我们的实验表明我们的方法可以在各种环境中生成标签。
translated by 谷歌翻译
This work presents a set of neural network (NN) models specifically designed for accurate and efficient fluid dynamics forecasting. In this work, we show how neural networks training can be improved by reducing data complexity through a modal decomposition technique called higher order dynamic mode decomposition (HODMD), which identifies the main structures inside flow dynamics and reconstructs the original flow using only these main structures. This reconstruction has the same number of samples and spatial dimension as the original flow, but with a less complex dynamics and preserving its main features. We also show the low computational cost required by the proposed NN models, both in their training and inference phases. The core idea of this work is to test the limits of applicability of deep learning models to data forecasting in complex fluid dynamics problems. Generalization capabilities of the models are demonstrated by using the same neural network architectures to forecast the future dynamics of four different multi-phase flows. Data sets used to train and test these deep learning models come from Direct Numerical Simulations (DNS) of these flows.
translated by 谷歌翻译
The field of robotics, and more especially humanoid robotics, has several established competitions with research oriented goals in mind. Challenging the robots in a handful of tasks, these competitions provide a way to gauge the state of the art in robotic design, as well as an indicator for how far we are from reaching human performance. The most notable competitions are RoboCup, which has the long-term goal of competing against a real human team in 2050, and the FIRA HuroCup league, in which humanoid robots have to perform tasks based on actual Olympic events. Having robots compete against humans under the same rules is a challenging goal, and, we believe that it is in the sport of archery that humanoid robots have the most potential to achieve it in the near future. In this work, we perform a first step in this direction. We present a humanoid robot that is capable of gripping, drawing and shooting a recurve bow at a target 10 meters away with considerable accuracy. Additionally, we show that it is also capable of shooting distances of over 50 meters.
translated by 谷歌翻译
In the absence of readily available labeled data for a given task and language, annotation projection has been proposed as one of the possible strategies to automatically generate annotated data which may then be used to train supervised systems. Annotation projection has often been formulated as the task of projecting, on parallel corpora, some labels from a source into a target language. In this paper we present T-Projection, a new approach for annotation projection that leverages large pretrained text2text language models and state-of-the-art machine translation technology. T-Projection decomposes the label projection task into two subtasks: (i) The candidate generation step, in which a set of projection candidates using a multilingual T5 model is generated and, (ii) the candidate selection step, in which the candidates are ranked based on translation probabilities. We evaluate our method in three downstream tasks and five different languages. Our results show that T-projection improves the average F1 score of previous methods by more than 8 points.
translated by 谷歌翻译
The evolution of wireless communications into 6G and beyond is expected to rely on new machine learning (ML)-based capabilities. These can enable proactive decisions and actions from wireless-network components to sustain quality-of-service (QoS) and user experience. Moreover, new use cases in the area of vehicular and industrial communications will emerge. Specifically in the area of vehicle communication, vehicle-to-everything (V2X) schemes will benefit strongly from such advances. With this in mind, we have conducted a detailed measurement campaign with the purpose of enabling a plethora of diverse ML-based studies. The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies, thus enabling a variety of different studies towards V2X. The datasets are labeled and sampled with a high time resolution. Furthermore, we make the data publicly available with all the necessary information to support the on-boarding of new researchers. We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage, as well as some hints at potential research studies.
translated by 谷歌翻译
This paper proposes a question-answering system that can answer questions whose supporting evidence is spread over multiple (potentially long) documents. The system, called Visconde, uses a three-step pipeline to perform the task: decompose, retrieve, and aggregate. The first step decomposes the question into simpler questions using a few-shot large language model (LLM). Then, a state-of-the-art search engine is used to retrieve candidate passages from a large collection for each decomposed question. In the final step, we use the LLM in a few-shot setting to aggregate the contents of the passages into the final answer. The system is evaluated on three datasets: IIRC, Qasper, and StrategyQA. Results suggest that current retrievers are the main bottleneck and that readers are already performing at the human level as long as relevant passages are provided. The system is also shown to be more effective when the model is induced to give explanations before answering a question. Code is available at \url{https://github.com/neuralmind-ai/visconde}.
translated by 谷歌翻译
Given the impact of language models on the field of Natural Language Processing, a number of Spanish encoder-only masked language models (aka BERTs) have been trained and released. These models were developed either within large projects using very large private corpora or by means of smaller scale academic efforts leveraging freely available data. In this paper we present a comprehensive head-to-head comparison of language models for Spanish with the following results: (i) Previously ignored multilingual models from large companies fare better than monolingual models, substantially changing the evaluation landscape of language models in Spanish; (ii) Results across the monolingual models are not conclusive, with supposedly smaller and inferior models performing competitively. Based on these empirical results, we argue for the need of more research to understand the factors underlying them. In this sense, the effect of corpus size, quality and pre-training techniques need to be further investigated to be able to obtain Spanish monolingual models significantly better than the multilingual ones released by large private companies, specially in the face of rapid ongoing progress in the field. The recent activity in the development of language technology for Spanish is to be welcomed, but our results show that building language models remains an open, resource-heavy problem which requires to marry resources (monetary and/or computational) with the best research expertise and practice.
translated by 谷歌翻译
We study inductive matrix completion (matrix completion with side information) under an i.i.d. subgaussian noise assumption at a low noise regime, with uniform sampling of the entries. We obtain for the first time generalization bounds with the following three properties: (1) they scale like the standard deviation of the noise and in particular approach zero in the exact recovery case; (2) even in the presence of noise, they converge to zero when the sample size approaches infinity; and (3) for a fixed dimension of the side information, they only have a logarithmic dependence on the size of the matrix. Differently from many works in approximate recovery, we present results both for bounded Lipschitz losses and for the absolute loss, with the latter relying on Talagrand-type inequalities. The proofs create a bridge between two approaches to the theoretical analysis of matrix completion, since they consist in a combination of techniques from both the exact recovery literature and the approximate recovery literature.
translated by 谷歌翻译
Visual object tracking under challenging conditions of motion and light can be hindered by the capabilities of conventional cameras, prone to producing images with motion blur. Event cameras are novel sensors suited to robustly perform vision tasks under these conditions. However, due to the nature of their output, applying them to object detection and tracking is non-trivial. In this work, we propose a framework to take advantage of both event cameras and off-the-shelf deep learning for object tracking. We show that reconstructing event data into intensity frames improves the tracking performance in conditions under which conventional cameras fail to provide acceptable results.
translated by 谷歌翻译
We present RAVEn, a self-supervised multi-modal approach to jointly learn visual and auditory speech representations. Our pre-training objective involves encoding masked inputs, and then predicting contextualised targets generated by slowly-evolving momentum encoders. Driven by the inherent differences between video and audio, our design is asymmetric w.r.t. the two modalities' pretext tasks: Whereas the auditory stream predicts both the visual and auditory targets, the visual one predicts only the auditory targets. We observe strong results in low- and high-resource labelled data settings when fine-tuning the visual and auditory encoders resulting from a single pre-training stage, in which the encoders are jointly trained. Notably, RAVEn surpasses all self-supervised methods on visual speech recognition (VSR) on LRS3, and combining RAVEn with self-training using only 30 hours of labelled data even outperforms a recent semi-supervised method trained on 90,000 hours of non-public data. At the same time, we achieve state-of-the-art results in the LRS3 low-resource setting for auditory speech recognition (as well as for VSR). Our findings point to the viability of learning powerful speech representations entirely from raw video and audio, i.e., without relying on handcrafted features. Code and models will be made public.
translated by 谷歌翻译