引力波天文学是一个充满活力的领域,它利用经典和现代数据处理技术来理解宇宙。已经提出了各种方法来提高检测方案的效率,层次匹配的过滤是一个重要的策略。同时,深度学习方法最近已经证明了与匹配的过滤方法和显着统计性能的一致性。在这项工作中,我们提出了分层检测网络(HDN),这是一种新型的有效检测方法,结合了分层匹配和深度学习的思想。使用新型损失函数对网络进行了训练,该功能同时编码统计准确性和效率的目标。我们讨论了提出的模型的复杂性降低的来源,并描述了专门在不同区域的每个层的初始化的一般配方。我们使用开放的LiGO数据和合成注射的实验证明了HDN的性能,并使用两层型号观察$ 79 \%$ $效率的增益,而匹配的过滤率则以$ 0.2 \%$ $的匹配过滤率。此外,我们展示了如何使用两层模型初始化的三层HDN训练三层HDN可以进一步提高准确性和效率,从而突出了多个简单层在有效检测中的功能。
translated by 谷歌翻译
胎儿超声(US)中胎盘的自动分割由于(i)(i)胎盘外观的高度多样性而具有挑战性我们禁止在妊娠晚期进行整个胎盘评估的观点。在这项工作中,我们通过多任务学习方法解决了这三个挑战,该方法结合了单个卷积神经网络中胎盘位置(例如,前,后部)和语义胎盘分段的分类。通过分类任务,模型可以从更大,更多样化的数据集中学习,同时在有限的训练集条件下提高分割任务的准确性。通过这种方法,我们研究了多个评估者的注释的变异性,并表明我们的自动分割(前胎盘的骰子为0.86,后胎盘的骰子为0.83),与观察者内和观察者间的变异性相比,我们的自动段性能达到了人级的性能。最后,我们的方法可以使用由三个阶段组成的多视图US采集管道提供整个胎盘分割:多探针图像采集,图像融合和图像分段。这会导致对较大结构(例如胎盘中的胎盘)的高质量分割,其图像伪像降低,这超出了单个探针的视野。
translated by 谷歌翻译
深层生成模型已成为检测数据中任意异常的有前途的工具,并分配了手动标记的必要性。最近,自回旋变压器在医学成像中取得了最先进的性能。但是,这些模型仍然具有一些内在的弱点,例如需要将图像建模为1D序列,在采样过程中误差的积累以及与变压器相关的显着推理时间。去核扩散概率模型是一类非自动回旋生成模型,最近显示出可以在计算机视觉中产生出色的样品(超过生成的对抗网络),并实现与变压器具有竞争力同时具有快速推理时间的对数可能性。扩散模型可以应用于自动编码器学到的潜在表示,使其易于扩展,并适用于高维数据(例如医学图像)的出色候选者。在这里,我们提出了一种基于扩散模型的方法,以检测和分段脑成像中的异常。通过在健康数据上训练模型,然后探索其在马尔可夫链上的扩散和反向步骤,我们可以识别潜在空间中的异常区域,因此可以确定像素空间中的异常情况。我们的扩散模型与一系列具有2D CT和MRI数据的实验相比,具有竞争性能,涉及合成和实际病理病变,推理时间大大减少,从而使它们的用法在临床上可行。
translated by 谷歌翻译
随着工程系统的复杂性的增长,对自动方法的需求越来越多,可以检测,诊断甚至正确的瞬时异常,这些异常不可避免地会出现,并且可能难以或不可能手动诊断和修复。在我们文明的最敏感和最复杂的系统中,探测器在引力波引起的距离中寻找令人难以置信的很小的变化 - 阿尔伯特·爱因斯坦(Albert Einstein)最初预测的现象是由于黑洞和其他其他碰撞而在宇宙中涌现和传播的探测器。深空中的大量物体。此类探测器的极端复杂性和精度使它们受到瞬时噪声问题的影响,这些问题可能会大大限制其敏感性和有效性。在这项工作中,我们介绍了一种可以检测和表征这种大规模复杂系统的新兴瞬态异常的方法的演示。我们通过一个普遍的问题之一来说明自动化解决方案的性能,精度和适应性,限制重力波发现:陆地质量造影,污染了重力波观测体的高度敏感测量,并可以模仿甚至模仿的天体物理学信号他们正在听。具体而言,我们证明了高度可解释的卷积分类器如何自动学习从辅助探测器数据中检测瞬时异常,而无需观察异常本身。我们还说明了该模型的其他几个有用的功能,包括如何执行自动变量选择,以将数万个辅助数据渠道降低到只有几个相关的数据渠道;它如何识别这些通道中异常情况的行为特征;以及如何使用它来研究单个异常及其相关的渠道。
translated by 谷歌翻译
随着我们感知增强的能力,我们正在经历从数据贫困问题的过渡,其中中心问题是缺乏相关数据,即数据越来越多的问题,其中核心问题是确定一个中的一些相关功能海洋观察。通过在重力波天体物理学中应用的激励,我们研究了从检测器及其环境中丰富的测量值收集的引力波检测器中瞬时噪声伪影的存在。我们认为,功能学习 - 从数据中优化了哪些相关功能 - 对于实现高精度至关重要。我们引入的模型将错误率降低60%以上,而不是先前使用固定的手工制作功能的最新现状。功能学习不仅有用,因为它可以提高预测任务的性能;结果提供了有关与感兴趣现象相关的模式的宝贵信息,否则这些现象将是无法发现的。在我们的应用程序中,发现与瞬态噪声相关的功能提供了有关其起源的诊断信息,并建议缓解策略。在高维环境中学习具有挑战性。通过使用各种体系结构的实验,我们确定了成功模型中的两个关键因素:稀疏性,用于在高维观测中选择相关变量;和深度,这赋予了处理复杂相互作用和相对于时间变化的鲁棒性的灵活性。我们通过对实际检测器数据进行系统的实验来说明它们的意义。我们的结果提供了对机器学习社区中常见假设的实验性佐证,并具有直接适用于提高我们感知引力波的能力以及许多其他具有类似高维,嘈杂或部分无关数据的问题的问题。
translated by 谷歌翻译
我们最近提出了一个以DBM为中心的新群集操作系统堆栈DBO。DBO通过将ML代码封装在存储过程中,集中辅助ML数据,为基础DBMS内置的安全性,共同关注ML代码和数据以及跟踪数据和工作流源来源,从而为ML应用程序提供了独特的支持。在这里,我们在两个ML应用程序附近演示了这些好处的子集。我们首先表明,使用GPU的图像分类和对象检测模型可以用作DBOS存储程序,具有与现有系统竞争性能的DBOS存储程序。然后,我们提出了一项1D CNN,训练有素,可以在DBOS支持的Web服务上检测HTTP请求中的异常情况,从而实现SOTA结果。我们使用此模型来开发交互式异常检测系统,并通过定性用户反馈对其进行评估,并证明了其有用性作为未来工作的概念证明,以在DBO上开发实时的实时安全服务。
translated by 谷歌翻译
无人机可以提供最小约束的适应摄像头视图,以支持机器人远程启用。此外,可以自动化无人机视图,以减轻远程运行期间操作员的负担。但是,现有方法并不关注使用无人机作为自动视图提供商的两个重要方面。首先是无人机应如何从工作空间内的一系列质量视点(例如对象的相对侧)中进行选择。第二是如何补偿不可避免的无人机姿势不确定性。在本文中,我们提供了一种非线性优化方法,该方法可通过铰接的操纵器产生有效和适应性的无人机观点,用于远程注射。我们的第一个关键想法是使用稀疏的人类输入输入来在多个自动生成的无人机观点之间切换。我们的第二个关键思想是引入优化目标,以在考虑无人机不确定性以及对观点遮挡和环境碰撞的影响的同时,保持对操纵器的视图。我们在无人机操纵器远程遥控系统中提供了无人机观点方法的实例化。最后,我们在完成普通家庭和工业操作的任务中对方法进行了初步验证。
translated by 谷歌翻译
对于任何负责满足人类价值观或偏好的人工智能而言,平衡多个竞争和冲突目标是一项重要任务。冲突既是由于具有竞争价值的个体之间的错位而引起的,也是一个人之间的冲突价值体系之间的不对准。从规避损失的原则开始,我们设计了一组软目标决策的软最大化功能。在一组先前开发的环境中,板凳标记了这些功能,我们发现一种新的方法特别是“分裂功能exp-log averver over over over over over”(SFELLA),学习的速度比最先进的阈值对准目标方法\引用{vamplew_potential的_2021}对其进行了测试的四个任务中的三个,并在学习后达到了相同的最佳性能。 SFELLA还显示出相对鲁棒性的改善,以抵抗客观量表的变化,这可能突出了涉及环境动态分布变化的优势。必须从预印本中省略进一步的工作,但是在最终发布的版本中,我们将进一步将SFELLA与多目标奖励指数(更多)方法进行比较,表明SFELLA在简单的先前描述的觅食任务中的性能类似,但是,在经纪人工作时没有耗尽的新资源的经过修改的觅食环境中,SFELLA收集了更多的新资源,而在旧资源方面几乎没有成本。总体而言,我们发现SFELLA对于避免有时以阈值方法出现的问题而有用,并且在保留其保守的,避开逆转损失的激励结构的同时,比更多的奖励响应响应。
translated by 谷歌翻译
可以使用X射线自由电子激光器的强脉冲和短脉冲直接通过单次相干衍射成像直接观察到自由飞行中孤立的纳米样品的结构和动力学。广角散射图像甚至编码样品的三维形态信息,但是该信息的检索仍然是一个挑战。到目前为止,只有通过与高度约束模型拟合,需要对单镜头实现有效的三维形态重建,这需要有关可能的几何形状的先验知识。在这里,我们提出了一种更通用的成像方法。依赖于允许凸多面体描述的任何样品形态的模型,我们从单个银纳米颗粒中重建广角衍射模式。除了具有高对称性的已知结构动机外,我们还检索了以前无法访问的不完美形状和聚集物。我们的结果为单个纳米颗粒的真实3D结构确定以及最终的超快纳米级动力学的3D电影开辟了新的途径。
translated by 谷歌翻译
预期风险最小化(ERM)是机器学习系统的核心。这意味着使用单个数字(其平均值)总结了损失分布中固有的风险。在本文中,我们提出了一种构建风险措施的一般方法,该方法表现出所需的尾巴敏感性,并可能取代ERM中的期望操作员。我们的方法依赖于具有所需尾巴行为的参考分布的规范,该分布与连贯上层概率的一对一对应关系。与此上层概率兼容的任何风险度量都显示出尾部灵敏度,该灵敏度可很好地调整为参考分布。作为一个具体的例子,我们专注于基于F-Divergence歧义集的差异风险度量,这是一种广泛的工具,用于促进机器学习系统的分布鲁棒性。例如,我们展示了基于kullback-leibler差异的歧义集与次指定随机变量的类别相关。我们阐述了差异风险度量和重新排列不变的Banach规范的联系。
translated by 谷歌翻译