我们提出了一种雷达惯性内径测量的方法,其使用连续时间框架来熔断来自多个汽车雷达的熔丝测量和惯性测量单元(IMU)。不利的天气条件对雷达传感器的操作性能不同,与相机和激光器传感器不同,对雷达传感器的操作性能没有显着影响。雷达在这种情况下的鲁棒性和乘客车辆雷达的普遍普遍激励我们来看看雷达用于自我运动估计。连续时间轨迹表示不仅应用于实现异构和异步多传感器融合的框架,还应用于通过能够计算封闭形式的姿势及其衍生物来实现高效优化,并且在任何特定时间沿着弹道。我们将我们的连续时间估计与来自离散时间雷达 - 惯性内径型方法的方法进行比较,并表明我们的连续时间方法优于离散时间方法。据我们所知,这是第一次将连续时间框架应用于雷达惯性内径术。
translated by 谷歌翻译
作者最近给出了$ n^{o(\ log \ log n)} $时间成员资格查询算法,用于在统一分布下正确学习决策树(Blanc等,2021)。此问题的先前最快算法以$ n^{o(\ log n)} $ time运行,这是Ehrenfeucht和Haussler(1989)的经典算法,这是无分配设置的经典算法。在本文中,我们强调了获得多项式时间算法的自然开放问题,讨论获得它的可能途径以及我们认为具有独立利益的状态中级里程碑。
translated by 谷歌翻译
符号知识图(kgs)是通过昂贵的人众包或特定于域特异性的复杂信息提取管道来构建的。诸如BERT之类的新兴大型语言模型(LMS)已显示出隐式编码的大量知识,可以使用正确设计的提示来查询。但是,与明确的公斤相比,黑盒LMS中的知识通常很难访问或编辑,并且缺乏解释性。在这项工作中,我们旨在从LMS收获符号KG,这是一个由神经LMS的灵活性和可扩展性增强的自动kg构造的新框架。与通常依赖大型人类注释的数据或现有大量KG的先前作品相比,我们的方法仅需要对关系的最小定义作为输入,因此适合于以前无法提取有关丰富新关系的知识。该方法会自动生成多样化的提示,并在给定的LM内执行有效的知识搜索,以进行一致和广泛的输出。与以前的方法相比,使用我们的方法收获的知识要准确得多,如自动和人类评估所示。结果,我们源于多元化的LMS,一个新的KG家族(例如Bertnet和Robertanet),其中包含一套更丰富的常识关系,包括复杂的关系(例如,A对B的能力,但不擅长B”)人类注销的kg(例如概念网)。此外,由此产生的kg也是解释各自的源LMS的工具,从而导致对不同LMS不同知识能力的新见解。
translated by 谷歌翻译
环境的语义(例如地形类型和属性)揭示了腿部机器人调整其行为的重要信息。在这项工作中,我们提出了一个框架,该框架从对四足动物的知觉中学习语义感知的运动技能,以便使用感知信息的机器人可以以适当的速度和步态穿越复杂的越野地形。由于缺乏高保真性户外模拟,我们的框架需要直接在现实世界中进行培训,这带来了数据效率和安全性的独特挑战。为了确保样本效率,我们使用越野驾驶数据集预先培训感知模型。为了避免现实世界政策探索的风险,我们利用人类演示来训练速度政策,从相机图像中选择所需的前进速度。为了获得最大的遍历性,我们将速度策略与步态选择器配对,该步态选择器为每个前进速度选择了强大的运动步态。仅使用40分钟的人类演示数据,我们的框架就可以根据感知的地形语义来调整机器人的速度和步态,并使机器人能够以近距离的速度行驶超过6公里。
translated by 谷歌翻译
由于COVID-19,许多学校通过视频会议软件在线考试已经采用了许多学校。虽然方便,但教师要同时显示的学生变焦窗口监督在线考试是具有挑战性的。在本文中,我们提出了IEXAM,这是一种智能的在线考试监测和分析系统,不仅可以使用面部检测来帮助监护人实时学生识别,而且还可以检测到常见的异常行为(包括面部消失,旋转的面部,旋转的面部,旋转,,旋转,并在考试期间用另一个人替换)通过基于面部识别后的外观后视频分析。为了建立这样的新型系统,我们克服了三个挑战。首先,我们发现了一种轻巧的方法来捕获考试视频流并实时分析它们。其次,我们利用每个学生的变焦窗口上显示的左角名称,并提出了改进的OCR(光学角色识别)技术来自动收集具有动态位置的学生面孔的地面真相。第三,我们进行了几次实验比较和优化,以有效缩短教师PC所需的训练时间和测试时间。我们的评估表明,IEXAM可以实现高精度,实时面部检测为90.4%,后验后面部识别率为98.4%,同时保持可接受的运行时性能。我们已经在https://github.com/vprlab/iexam上提供了IEXAM的源代码。
translated by 谷歌翻译
本文分析了交付功能步态结果的联合空间步行机制和冗余。分析了两名参加多因素研究并在三个课程中行走的健康男性成年人的生物力学措施。两位参与者都采用不同的人体内部和人际补偿策略(例如,拱顶,髋关节远足)跨步行条件,并表现出显着的步态模式改变,同时保持任务空间(功能)步态参数不变。他们还更喜欢各种不对称的步长,但在自由步行过程中保持了对称步长的一致性和Cadence-Invariant。结果表明,个性化方法的重要性以及需要从功能(任务空间)到关节空间步态分析的范式转变,以便在(a)典型步态和提供以人为中心的人类机器人相互作用。
translated by 谷歌翻译
时空预测学习旨在通过从历史框架中学习来产生未来的帧。在本文中,我们研究了现有方法,并提出了时空预测学习的一般框架,其中空间编码器和解码器捕获框架内特征和中间时间模块捕获框架间相关性。尽管主流方法采用经常性单元来捕获长期的时间依赖性,但由于无法可行的架构,它们的计算效率低。为了使时间模块并行,我们提出了时间注意单元(TAU),该单元将时间关注分解为框内静态注意力和框架间动力学注意力。此外,虽然平方误差损失侧重于框架内错误,但我们引入了一种新颖的差异差异正则化,以考虑框架间的变化。广泛的实验表明,所提出的方法使派生模型能够在各种时空预测基准上实现竞争性能。
translated by 谷歌翻译
我们可以将袖珍配体的相互作用知识注入预训练的模型并共同学习其化学空间吗?近年来,预处理的分子和蛋白质引起了很大的关注,而这些方法中的大多数都集中在学习一个化学空间,并且缺乏注射生物学知识。我们提出一个共同监督预告片(COSP)的框架,以同时学习3D口袋和配体表示。我们使用封闭式的几何消息传递层来对3D口袋和配体进行建模,其中每个节点的化学特征,几何位置和方向都被考虑。为了学习生物学有意义的嵌入,我们通过对比度损失将袖珍配体相互作用知识注入预处理模型。考虑到分子的特异性,我们进一步提出了化学相似性增强的负抽样策略,以提高对比度学习绩效。通过广泛的实验,我们得出的结论是,COSP可以在口袋匹配,分子属性预测和虚拟筛选中获得竞争成果。
translated by 谷歌翻译
估计看不见对象的6D姿势对许多现实世界应用非常有需求。但是,当前的最新姿势估计方法只能处理以前训练的对象。在本文中,我们提出了一项新任务,以使算法能够估计测试过程中新颖对象的6D姿势估计。我们收集一个具有真实图像和合成图像的数据集,并且在测试集中最多可见48个看不见的对象。同时,我们提出了一个名为infimum Add(IADD)的新指标,这是对具有不同类型姿势歧义的对象的不变测量。还提供了针对此任务的两个阶段基线解决方案。通过训练端到端的3D对应网络,我们的方法可以准确有效地找到看不见的对象和部分视图RGBD图像之间的相应点。然后,它使用算法鲁棒到对象对称性从对应关系中计算6D姿势。广泛的实验表明,我们的方法的表现优于几个直观基线,从而验证其有效性。所有数据,代码和模型都将公开可用。项目页面:www.graspnet.net/unseen6d
translated by 谷歌翻译
制造公司通常使用复杂的生产计划系统优化生产步骤,通常提供近乎最佳的解决方案。作为交付近乎最佳时间表的缺点,计划系统具有很高的计算需求,导致计算数小时。在正常情况下,如果在执行时间表之前有足够的缓冲时间(例如第二天晚上)。但是,如果发生意外的干扰,例如延迟零件交货或缺陷制造商品,计划的时间表可能无效,而迅速的重新植入变得必要。由于计算要求,这种立即进行的重复不适合现有的最佳规划师。本文提出了一种新颖的解决方案,可以在使用现有计划的不同类型的破坏情况下有效,有效地进行重新设计。该方法是基于想法,以尽可能多地遵守现有时间表,并根据有限的本地变化进行调整。为此,已经设计了一种基于代理的调度机制,其中代理代表材料和生产地点,并使用局部优化技术和谈判来生成适应的(足够但非最佳)时间表。该方法已使用华为的真实生产数据进行了评估,表明有效的时间表是在短时间内生产的。该系统已被实施为概念证明,目前已重新实现并转移到基于Jadex代理平台的生产系统中。
translated by 谷歌翻译