我们研究了对抗性噪声模型中上下文搜索的问题。令$ d $为问题的维度,$ t $为时间范围,$ c $是系统中的噪声总量。对于$ \ eps $ -Ball损失,我们给出了$ o(C + d \ log(1/\ eps))的紧密遗憾,$(d^3 \ log(1/\ eps))\ log^2(t) + c \ log(t)\ log(1/\ eps))$ Krishnamurthy等人(stoc21)的结合。对于对称损失,我们给出了一种有效的算法,后悔$ O(C+D \ log T)$。我们的技术与先前的方法有很大的不同。具体而言,我们跟踪候选向量上的密度函数,而不是由候选向量组成的知识集,该媒介向量与获得的反馈一致。
translated by 谷歌翻译
Image generation and image completion are rapidly evolving fields, thanks to machine learning algorithms that are able to realistically replace missing pixels. However, generating large high resolution images, with a large level of details, presents important computational challenges. In this work, we formulate the image generation task as completion of an image where one out of three corners is missing. We then extend this approach to iteratively build larger images with the same level of detail. Our goal is to obtain a scalable methodology to generate high resolution samples typically found in satellite imagery data sets. We introduce a conditional progressive Generative Adversarial Networks (GAN), that generates the missing tile in an image, using as input three initial adjacent tiles encoded in a latent vector by a Wasserstein auto-encoder. We focus on a set of images used by the United Nations Satellite Centre (UNOSAT) to train flood detection tools, and validate the quality of synthetic images in a realistic setup.
translated by 谷歌翻译
We introduce the concepts of inverse solvability and security for a generic linear forward model and demonstrate how they can be applied to models used in federated learning. We provide examples of such models which differ in the resulting inverse solvability and security as defined in this paper. We also show how the large number of users participating in a given iteration of federated learning can be leveraged to increase both solvability and security. Finally, we discuss possible extensions of the presented concepts including the nonlinear case.
translated by 谷歌翻译
There is an increasing need in our society to achieve faster advances in Science to tackle urgent problems, such as climate changes, environmental hazards, sustainable energy systems, pandemics, among others. In certain domains like chemistry, scientific discovery carries the extra burden of assessing risks of the proposed novel solutions before moving to the experimental stage. Despite several recent advances in Machine Learning and AI to address some of these challenges, there is still a gap in technologies to support end-to-end discovery applications, integrating the myriad of available technologies into a coherent, orchestrated, yet flexible discovery process. Such applications need to handle complex knowledge management at scale, enabling knowledge consumption and production in a timely and efficient way for subject matter experts (SMEs). Furthermore, the discovery of novel functional materials strongly relies on the development of exploration strategies in the chemical space. For instance, generative models have gained attention within the scientific community due to their ability to generate enormous volumes of novel molecules across material domains. These models exhibit extreme creativity that often translates in low viability of the generated candidates. In this work, we propose a workbench framework that aims at enabling the human-AI co-creation to reduce the time until the first discovery and the opportunity costs involved. This framework relies on a knowledge base with domain and process knowledge, and user-interaction components to acquire knowledge and advise the SMEs. Currently,the framework supports four main activities: generative modeling, dataset triage, molecule adjudication, and risk assessment.
translated by 谷歌翻译
在最初出生在太空行业的基于时间轴的计划方法中,一组状态变量(时间表)的演变受一组时间约束的控制。基于传统时间表的计划系统在整合计划与处理时间不确定性的执行方面表现出色。为了处理一般的非确定主义,最近引入了基于时间轴的游戏的概念。已经证明,发现此类游戏是否存在获胜策略是2Exptime-Complete。但是,缺少合成实施此类策略的控制器的具体方法。本文填补了这一空白,概述了基于时间轴游戏的控制器合成方法。
translated by 谷歌翻译
极化成像已应用于越来越多的机器人视觉应用中(例如,水下导航,眩光去除,脱落,对象分类和深度估计)。可以在市场RGB极化摄像机上找到可以在单个快照中捕获颜色和偏振状态的摄像头。由于传感器的特性分散和镜头的使用,至关重要的是校准这些类型的相机以获得正确的极化测量。到目前为止开发的校准方法要么不适合这种类型的相机,要么需要在严格的设置中进行复杂的设备和耗时的实验。在本文中,我们提出了一种新方法来克服对复杂的光学系统有效校准这些相机的需求。我们表明,所提出的校准方法具有多个优点,例如任何用户都可以使用统一的线性极化光源轻松校准相机,而无需任何先验地了解其偏振状态,并且收购数量有限。我们将公开提供校准代码。
translated by 谷歌翻译
面向目标的对话系统最初是作为自然语言界面设计的,用于用户可能会询问域,插槽和值进一步描述的实体的固定数据集。随着我们朝着适应性的对话系统迈进,有关域,插槽和值的知识可能会发生变化,因此越来越需要大规模从原始对话或相关的非拨号数据中自动提取这些术语。在本文中,我们通过探索可以使系统能够以纯粹数据驱动的方式在对话中发现对话中的域,插槽和值的不同功能来迈出这个方向的重要一步。我们检查的功能来自单词嵌入,语言建模功能以及嵌入空间一词的拓扑特征。为了检查每个功能集的效用,我们基于广泛使用的多沃兹数据集训练种子模型。然后,我们将此模型应用于其他语料库,即模式引导的对话数据集。我们的方法的表现优于仅依赖单词嵌入的先前提出的方法。我们还证明,每个功能都负责发现各种内容。我们认为,我们的结果需要进一步研究本体诱导,并继续利用对话和自然语言处理研究的拓扑数据分析。
translated by 谷歌翻译
卷积自动编码器经过翼型空气动力模拟数据库进行训练,并根据整体准确性和解释性进行评估。目的是预测失速并研究自动编码器区分翼型压力分布的线性和非线性响应的能力,以与攻击角度变化。在对学习基础架构进行敏感性分析之后,我们研究了针对极端压缩率的自动编码器确定的潜在空间,即非常低维的重建。我们还提出了一种使用解码器来生成新的合成翼型几何形状和空气动力溶液的策略,该策略是通过自动编码器学到的潜在表示中的插值和推断。
translated by 谷歌翻译
从语义视觉知识中生成图像是一项具有挑战性的任务,与诸如类标签或文本描述之类的替代方案相比,以复杂,微妙和明确的方式调节合成过程很有用。尽管存在以语义表示为条件的生成方法,但除了对对象之间的约束规范外,它们没有提供控制生成过程的方法。例如,迭代生成或修改图像通过手动添加特定项目的可能性是所需的属性,据我们所知,文献尚未在文献中得到充分研究。在这项工作中,我们提出了一种基于变压器的方法,该方法以场景图为条件,相反,该方法针对最近的基于变压器的方法,还采用解码器来自动构成图像,从而使合成过程更有效和可控。提出的体系结构由三个模块组成:1)图形卷积网络,以编码输入图的关系; 2)编码器码头变压器,可自动加入构成输出图像; 3)一种自动编码器,用于生成用作变压器每个生成步骤的输入/输出的表示。在CIFAR10和MNIST图像上获得的结果表明,我们的模型能够满足由场景图定义的语义约束,并通过考虑到所需目标的用户提供的部分渲染,以模拟场景中的视觉对象之间的关系。
translated by 谷歌翻译
决定何时购买或出售股票并不是一件容易的事,因为市场难以预测,受到政治和经济因素的影响。因此,基于计算智能的方法已应用于这个具有挑战性的问题。在这项工作中,每天使用技术分析标准以相似性(TOPSIS)的相似性(TOPSIS)对订单偏好进行排名,并选择最合适的股票进行购买。即便如此,在某些日子甚至Topsis都会选择不正确的选择。为了改善选择,应使用另一种方法。因此,提出了由经验模式分解(EMD)和极端学习机(ELM)组成的混合模型。 EMD将系列分解为几个子系列,因此提取了主要组分(趋势)。该组件由ELM处理,该组件执行下一个组件元素的预测。如果榆树预测的价值大于最后一个值,则确认购买股票的价值。该方法应用于巴西市场的50个股票的宇宙。与随机选择和Bovespa指数产生的回报相比,Topsis进行的选择显示出令人鼓舞的结果。使用EMD-ELM混合动力模型的确认能够增加利润交易的百分比。
translated by 谷歌翻译