预测具有微观结构的材料的代表性样品的演变是均质化的基本问题。在这项工作中,我们提出了一种图形卷积神经网络,其利用直接初始微结构的离散化表示,而无需分割或聚类。与基于特征和基于像素的卷积神经网络模型相比,所提出的方法具有许多优点:(a)它是深入的,因为它不需要卵容,但可以从中受益,(b)它具有简单的实现使用标准卷积滤波器和层,(c)它在没有插值的非结构化和结构网格数据上本身工作(与基于像素的卷积神经网络不同),并且(d)它可以保留与其他基于图形的卷积神经网络等旋转不变性。我们展示了所提出的网络的性能,并将其与传统的基于像素的卷积神经网络模型和基于传统的像素的卷积神经网络模型进行比较,并且在多个大型数据集上的基于特征的图形卷积神经网络。
translated by 谷歌翻译
我们描述了我们使用对CAD表示的深度学习来推断机械组件中交配部分之间的自由度的工作。我们使用由CAD零件和配偶将它们组成的大型实际机械组件的大型数据集训练我们的模型。我们提出了重新定义这些伴侣的方法,以使它们更好地反映组件的运动,并缩小可能的运动轴。我们还进行了一项用户研究,以创建具有更可靠标签的运动声音测试集。
translated by 谷歌翻译
在这项工作中,我们评估了如何利用具有周期性激活功能的神经网络可靠地压缩大型多维医学图像数据集,并将概念验证应用应用于4D扩散加权MRI(DMRI)。在医学成像景观中,多维MRI是开发对基础组织微观结构既敏感又具有特异性的生物标志物的关键研究领域。但是,这些数据的高维质在存储和共享功能和相关成本方面构成了挑战,需要适当的算法能够在低维空间中表示信息。深度学习中的最新理论发展表明了周期性激活函数如何成为隐式神经表示图像的强大工具,并且可以用于压缩2D图像。在这里,我们将此方法扩展到4D图像,并展示如何通过正弦激活网络的参数准确地表示任何给定的4D DMRI数据集,从而达到数据压缩率是标准放气算法的10倍。我们的结果表明,所提出的方法优于基准relu和tanh激活感知到均方根误差,峰值信噪比和结构相似性指数。随后使用张量和球形谐波表示的随后分析表明,所提出的损耗压缩可准确再现原始数据的特征,从而导致相对误差约5至10倍,比基准JPEG2000有损耗压缩低约5至10倍,与标准预处理步骤相似,例如MP-PCA表示,表明在当前接受的临床应用水平内丧失信息。
translated by 谷歌翻译
我们研究语言模型是否可以评估自己主张的有效性,并预测他们能够正确回答的问题。我们首先表明,当以正确的格式提供时,较大的模型在多样化的多项选择和True/False问题上进行了很好的校准。因此,我们可以通过要求模型首先提出答案,然后评估其答案正确的概率“ p(true)”来对开放式采样任务进行自我评估。我们发现在各种任务中,P(true)的表现,校准和缩放令人鼓舞。当我们允许模型考虑自己的许多样本之前,在预测一种特定可能性的有效性之前,自我评估的性能进一步改善。接下来,我们研究是否可以培训模型来预测“ P(ik)”,即“我知道”问题的概率,而无需参考任何特定提出的答案。模型在预测P(IK)方面表现良好,并且在跨任务中部分概括,尽管它们在新任务上的P(IK)校准方面遇到了困难。预测的p(IK)概率在存在相关的原始材料的情况下以及对数学单词问题解决方案的提示也适当增加。我们希望这些观察结果为培训更诚实的模型提供了基础,并研究了诚实对模型模仿人类写作以外的其他目标培训的案例的普遍性。
translated by 谷歌翻译
我们展示了一种物理感知的变压器,用于从具有不同分辨率,颜色空间,焦距,焦距和暴露的相机的基于特征的数据融合。我们还展示了使用开源计算机图形软件为变压器合成训练数据生成的可扩展解决方案。我们演示了具有不同光谱响应,瞬时视野和框架速率的阵列上的图像合成。
translated by 谷歌翻译
多节点WDM网络的数字双胞胎模型是从单个访问点获得的。该模型用于预测和优化网络中每个链接的发射功率配置文件,并获得最多2.2 〜db的边距改进。不优化的传输。
translated by 谷歌翻译
边缘计算是加速机器学习算法支持移动设备的流行目标,而无需通信潜伏在云中处理它们。机器学习的边缘部署主要考虑传统问题,例如其安装的交换约束(尺寸,重量和功率)。但是,考虑到体现能量和碳的重要贡献,这种指标不足以考虑计算的环境影响。在本文中,我们探讨了用于推理和在线培训的卷积神经网络加速引擎的权衡。特别是,我们探讨了内存处理(PIM)方法,移动GPU加速器以及最近发布的FPGA的使用,并将它们与新颖的赛车记忆PIM进行比较。用赛车记忆PIM替换支持PIM的DDR3可以恢复其体现的能量,以至于1年。对于高活动比,与支持PIM的赛车记忆相比,移动GPU可以更可持续,但具有更高的体现能量可以克服。
translated by 谷歌翻译
在结构健康监测中使用机器学习的情况变得越来越普遍,因为许多固有的任务(例如回归和分类)在开发基于条件的评估中自然而然地属于其职责。本章介绍了物理知识的机器学习概念,其中人们适应ML算法来说明工程师通常会试图建模或评估的结构。本章将演示将基于物理学的模型与数据驱动的模型相结合的灰色盒模型如何在SHM设置中提高预测能力。此处证明的方法的特殊优势是模型的推广能力,并具有在不同制度中增强的预测能力。这是一项需要评估的关键问题,或者监视数据不涵盖结构将经历的操作条件。本章将概述物理知识的ML,并在贝叶斯环境中引入了许多用于灰色盒子建模的方法。讨论的主要ML工具将是高斯过程回归,我们将证明如何通过约束,平均功能和内核设计以及最终在状态空间设置中通过约束来合并物理假设/模型。将展示一系列SHM应用程序,从负载监视离岸和航空航天结构的负载任务到长跨度桥梁的性能监控。
translated by 谷歌翻译
我们提出了一个框架,用于稳定验证混合智能线性编程(MILP)代表控制策略。该框架比较了固定的候选策略,该策略承认有效的参数化,可以以低计算成本进行评估,与固定基线策略进行评估,固定基线策略已知稳定但评估昂贵。我们根据基线策略的最坏情况近似错误为候选策略的闭环稳定性提供了足够的条件,我们表明可以通过求解混合构成二次计划(MIQP)来检查这些条件。 。此外,我们证明可以通过求解MILP来计算候选策略的稳定区域的外部近似。所提出的框架足以容纳广泛的候选策略,包括Relu神经网络(NNS),参数二次程序的最佳解决方案图以及模型预测性控制(MPC)策略。我们还根据提议的框架在Python中提供了一个开源工具箱,该工具可以轻松验证自定义NN架构和MPC公式。我们在DC-DC电源转换器案例研究的背景下展示了框架的灵活性和可靠性,并研究了计算复杂性。
translated by 谷歌翻译
物理信息神经网络(PINN)能够找到给定边界值问题的解决方案。我们使用有限元方法(FEM)的几个想法来增强工程问题中现有的PINN的性能。当前工作的主要贡献是促进使用主要变量的空间梯度作为分离神经网络的输出。后来,具有较高衍生物的强形式应用于主要变量的空间梯度作为物理约束。此外,该问题的所谓能量形式被应用于主要变量,作为训练的附加约束。所提出的方法仅需要一阶导数来构建物理损失函数。我们讨论了为什么通过不同模型之间的各种比较,这一点是有益的。基于配方混合的PINN和FE方法具有一些相似之处。前者利用神经网络的复杂非线性插值将PDE及其能量形式最小化及其能量形式,而后者则在元素节点借助Shape函数在元素节点上使用相同。我们专注于异质固体,以显示深学习在不同边界条件下在复杂环境中预测解决方案的能力。针对FEM的解决方案对两个原型问题的解决方案进行了检查:弹性和泊松方程(稳态扩散问题)。我们得出的结论是,通过正确设计PINN中的网络体系结构,深度学习模型有可能在没有其他来源的任何可用初始数据中解决异质域中的未知数。最后,关于Pinn和FEM的组合进行了讨论,以在未来的开发中快速准确地设计复合材料。
translated by 谷歌翻译