Characterizing the patterns of errors that a system makes helps researchers focus future development on increasing its accuracy and robustness. We propose a novel form of "meta learning" that automatically learns interpretable rules that characterize the types of errors that a system makes, and demonstrate these rules' ability to help understand and improve two NLP systems. Our approach works by collecting error cases on validation data, extracting meta-features describing these samples, and finally learning rules that characterize errors using these features. We apply our approach to VilBERT, for Visual Question Answering, and RoBERTa, for Common Sense Question Answering. Our system learns interpretable rules that provide insights into systemic errors these systems make on the given tasks. Using these insights, we are also able to "close the loop" and modestly improve performance of these systems.
translated by 谷歌翻译
手工和小规模的黄金开采(ASGM)是许多家庭的重要收入来源,但它可以产生巨大的社会和环境影响,尤其是在发展中国家的雨林中。Sentinel-2卫星收集了多光谱图像,可用于检测水位和质量的变化,这表明采矿地点位置。这项工作着重于对秘鲁亚马逊雨林中ASGM活动的认可。我们根据支持向量机(SVM)测试了几个半监督分类器,以检测Madre de Dios地区从2019年到2021年的水体变化,这是ASGM活动的全球热点之一。实验表明,基于SVM的模型可以实现RGB的合理性能(使用Cohen的$ \ kappa $ 0.49)和6通道图像(使用Cohen的$ \ kappa $ 0.71),具有非常有限的注释。还分析了合并实验室色彩空间的功效。
translated by 谷歌翻译
简介:人工智能(AI)有可能促进CMR分析以进行生物标志物提取的自动化。但是,大多数AI算法都经过特定输入域(例如单扫描仪供应商或医院量化成像协议)的培训,并且当从其他输入域中应用于CMR数据时,缺乏最佳性能的鲁棒性。方法:我们提出的框架包括一种基于AI的算法,用于对短轴图像的双脑室分割,然后进行分析后质量控制,以检测错误的结果。分割算法在来自两家NHS医院(n = 2793)的大型临床CMR扫描数据集上进行了培训,并在此数据集(n = 441)和五个外部数据集(n = 6808)上进行了验证。验证数据包括使用所有主要供应商的CMR扫描仪在12个不同中心获得的一系列疾病的患者的CMR扫描。结果:我们的方法产生的中位骰子得分超过87%,转化为观察者间变异范围内心脏生物标志物中的中值绝对错误:<8.4ml(左心室),<9.2ml(右心室),<13.3G(左心室),<13.3G(左心室所有数据集的心室质量),<5.9%(射血分数)。根据心脏疾病和扫描仪供应商的表型的病例分层显示出良好的一致性。结论:我们表明,我们提出的工具结合了在大规模多域CMR数据集中训练的最先进的AI算法和分析后质量控制,使我们能够从多个中心,供应商和心脏病。这是AI算法临床翻译的基本步骤。此外,我们的方法以无需额外的计算成本而产生一系列心脏功能(填充和弹出率,区域壁运动和应变)的附加生物标志物。
translated by 谷歌翻译
尽管电子健康记录是生物医学研究的丰富数据来源,但这些系统并未在医疗环境中统一地实施,并且由于医疗保健碎片化和孤立的电子健康记录之间缺乏互操作性,可能缺少大量数据。考虑到缺少数据的案例的删除可能会在随后的分析中引起严重的偏见,因此,一些作者更喜欢采用多重插补策略来恢复缺失的信息。不幸的是,尽管几项文献作品已经通过使用现在可以自由研究的任何不同的多个归档算法记录了有希望的结果,但尚无共识,MI算法效果最好。除了选择MI策略之外,归纳算法及其应用程序设置的选择也至关重要且具有挑战性。在本文中,受鲁宾和范布伦的开创性作品的启发,我们提出了一个方法学框架,可以应用于评估和比较多种多个插补技术,旨在选择用于计算临床研究工作中最有效的推断。我们的框架已被应用于验证和扩展较大的队列,这是我们在先前的文献研究中提出的结果,我们在其中评估了关键患者的描述符和Covid-19的影响在2型糖尿病患者中的影响,其数据为2型糖尿病,其数据为2型糖尿病由国家共同队列合作飞地提供。
translated by 谷歌翻译
目的:(1)开发深度学习算法,以识别3D光学相干断层扫描(OCT)扫描中的视神经头(ONH)的主要组织结构; (2)利用这些信息在健康,光盘博森(奇数)和乳头膜ONHS之间鲁棒地区分。由于高颅内压(51只眼)和健康对照(100只眼睛),这是一种横截面对比研究,由于高颅内压(51只眼睛),以及健康的对照(100只眼)。使用OCT获得ONH的3D扫描,然后加工以改善深层组织可见性。首先,使用984 B-Scans(从130只眼睛)开发了深度学习算法,以识别:主要的神经/结缔组织和奇数区域。使用骰子系数(DC)评估我们的算法的性能。在第2步骤中,使用1500Ct卷设计了一个分类算法(随机林),以严格从其德鲁森和普拉拉马那肿胀得分(来自细分)来执行3级分类(1:奇数,2:Papilledema,3:健康) )。为了评估性能,我们报告了每个类的接收器操作特征曲线(AUC)下的区域。我们的分割算法能够在存在时隔离神经和结缔组织和奇数区域。这是在测试集上的平均DC为0.93 $ 0.03的平均直流,相应于良好性能。分类是用高AUC的分类,即检测奇数,0.99美元0.01 0.01美元,用于检测Papilledema的0.99美元,0.98美元$ 0.02用于检测健康的ONH。我们的AI方法可以使用单个OCT扫描来准确地歧视奇数乳头。我们的分类表现非常出色,有需要在更大的人口中验证。我们的方法可能有可能建立10月作为神经眼科诊断成像的主干。
translated by 谷歌翻译
为N($ ^ 4 $ s)+ o $ _呈现和定量测试了一种用于预测来自特定初始状态(状态为分布或STD)的产品状态分布的机器学习(ML)模型。 {2} $(x $ ^ 3 \ sigma _ {\ rm g} ^ { - } $)$ \ lightarrow $ no(x $ ^ 2 \ pi $)+ o($ ^ 3 $ p)反应。用于训练神经网络(NN)的参考数据集由用于$ \ SIM 2000 $初始条件的显式准古典轨迹(QCT)模拟确定的最终状态分布。总体而言,通过根均方平方差价量化的预测精度$(\ SIM 0.003)$和$ r ^ 2 $ $(\ SIM 0.99)$之间的参考QCT和STD模型的预测很高测试集和离网状态特定的初始条件和从反应性状态分布中汲取的初始条件,其特征在于通过平移,旋转和振动温度。与在相同的初始状态分布上评估的更粗糙的粒度分布 - 分布(DTD)模型相比,STD模型表明了在反应物制剂中的状态分辨率的额外益处具有相当的性能。从特定的初始状态开始,还导致更多样化的最终状态分布,需要更具表现力的神经网络与DTD相比。显式QCT模拟之间的直接比较,STD模型和广泛使用的Larsen-Borgnakke(LB)模型表明,STD模型是定量的,而LB模型最适合旋转分布$ P(J')$和失败振动分布$ p(v')$。因此,STD模型可以非常适合模拟非预测高速流,例如,使用直接仿真蒙特卡罗方法。
translated by 谷歌翻译
计算机辅助方法为诊断和预测脑疾病显示了附加的价值,因此可以支持临床护理和治疗计划中的决策。本章将洞悉方法的类型,其工作,输入数据(例如认知测试,成像和遗传数据)及其提供的输出类型。我们将专注于诊断的特定用例,即估计患者的当前“状况”,例如痴呆症的早期检测和诊断,对脑肿瘤的鉴别诊断以及中风的决策。关于预测,即对患者的未来“状况”的估计,我们将缩小用例,例如预测多发性硬化症中的疾病病程,并预测脑癌治疗后患者的结局。此外,根据这些用例,我们将评估当前的最新方法,并强调当前对这些方法进行基准测试的努力以及其中的开放科学的重要性。最后,我们评估了计算机辅助方法的当前临床影响,并讨论了增加临床影响所需的下一步。
translated by 谷歌翻译
当观察结果被截断时,我们仅限于数据集的不完整图片。最近的方法通过转向得分匹配来处理截短的密度估计问题,而不需要访问棘手的归一化常数。我们为Riemannian歧管提供了一个新颖的扩展,以截断得分匹配。在$ \ r^3 $中的二维领域上向von Mises-Fisher和Kent发行版提供了申请,以及美国极端风暴观察的现实应用。在模拟数据实验中,我们的分数匹配估计器能够以较低的估计误差近似于真实的参数值,并显示出比最大似然估计器的改进。
translated by 谷歌翻译
基于变压器的模型已在各个领域(例如自然语言处理和计算机视觉)中广泛使用并实现了最先进的性能。最近的作品表明,变压器也可以推广到图形结构化数据。然而,由于技术挑战,诸如节点数量和非本地聚集的技术挑战之类的技术挑战,因此成功限于小规模图,这通常会导致对常规图神经网络的概括性能。在本文中,为了解决这些问题,我们提出了可变形的图形变压器(DGT),以动态采样的键和值对进行稀疏注意。具体而言,我们的框架首先构建具有各种标准的多个节点序列,以考虑结构和语义接近。然后,将稀疏的注意力应用于节点序列,以减少计算成本,以学习节点表示。我们还设计简单有效的位置编码,以捕获节点之间的结构相似性和距离。实验表明,我们的新型图形变压器始终胜过现有的基于变压器的模型,并且与8个图形基准数据集(包括大型图形)的最新模型相比,与最新的模型相比表现出竞争性能。
translated by 谷歌翻译
目的是对临床文本去识别的自然语言处理(NLP)模型的评估取决于临床注释的可用性,临床注释通常由于隐私问题而受到限制。 NLP沙盒是一种通过采用联合模型到数据的方法来减轻NLP模型缺乏数据和评估框架的方法。这使得无偏见的联合模型评估无需共享多个机构的敏感数据。材料和方法我们利用Synapse协作框架,容器化软件和OpenAPI Generator来构建NLP沙盒(NLPSANDBOX.IO)。我们使用来自三个机构的数据评估了两个最先进的NLP去识别注释模型Philter和Neuroner。我们使用来自外部验证站点的数据进一步验证了模型性能。结果我们通过去识别临床模型评估证明了NLP沙箱的有用性。外部开发人员能够将其模型纳入NLP沙盒模板中,并提供用户体验反馈。讨论我们证明了使用NLP沙箱对临床文本去识别模型进行多站点评估的可行性,而无需共享数据。标准化模型和数据模式可以使模型传输和实现平稳。为了概括NLP沙箱,数据所有者和模型开发人员需要进行工作,以开发合适和标准化的模式,并调整其数据或模型以适合模式。结论NLP沙箱降低了利用临床数据进行NLP模型评估的障碍,并促进了联合会的NLP模型的联合,多站点,无偏见的评估。
translated by 谷歌翻译