团队是人类成就的核心。在过去的半个世纪中,心理学家已经确定了五个跨文化有效的人格变量:神经质,外向性,开放性,尽职尽责和同意。前四个与团队绩效显示一致的关系。然而,令人愉快的(和谐,无私,谦虚和合作)表现出与团队绩效的无关紧要和高度可变的关系。我们通过计算建模解决这种不一致。基于代理的模型(ABM)用于预测人格特质对团队合作的影响,然后使用遗传算法来探索ABM的限制,以发现哪种特征与最佳和最差的表现相关,以解决与与最差的团队相关的问题,以解决与问题有关的问题。不同级别的不确定性(噪声)。探索所揭示的新依赖性通过分析迄今为止最大的团队绩效数据集的先前未观察到的数据来证实,其中包括593个团队中的3,698个个人,从事5,000多个没有不确定性的小组任务,在10年内收集了不确定性。我们的发现是,团队绩效和同意之间的依赖性受到任务不确定性的调节。以这种方式将进化计算与ABM相结合,为团队合作的科学研究,做出新的预测以及提高我们对人类行为的理解提供了一种新方法。我们的结果证实了计算机建模对发展理论的潜在实用性,并阐明了随着工作环境的越来越流畅和不确定的启示。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
基于AI的推荐系统已成功应用于许多域(例如,电子商务,提要排名)。医学专家认为,将这种方法纳入临床决策支持系统可能有助于减少医疗团队的错误并改善治疗过程中的患者结果(例如,创伤复苏,手术过程)。但是,已经进行了有限的研究来开发自动数据驱动的治疗决策支持。我们探索了构建治疗建议系统以提供下一分钟活动预测的可行性。该系统使用患者环境(例如人口统计和生命体征)和过程上下文(例如活动)来连续预测将在下一分钟进行的活动。我们在预先录制的创伤复苏数据集上评估了我们的系统,并对不同模型变体进行了消融研究。对于61种活动类型,最佳模型的平均F1得分为0.67。我们包括医疗团队的反馈并讨论未来的工作。
translated by 谷歌翻译
湍流的分析是融合等离子体物理学中的重要面积。目前的理论模型基于某些等离子体密度结构的演变量化湍流程度,称为Blob。在这项工作中,我们通过在合成数据上训练掩模R-CNN模型和合成和实际数据测试的掩模R-CNN模型,跟踪这些BLOB在高频视频数据中的形状和位置。因此,我们的模型有效地跟踪了合成和真实实验GPI数据的BLOB结构,显示其前景作为估计与Tokamak等离子体的边缘湍流相关的BloB统计的强大工具。
translated by 谷歌翻译
人类机器人相互作用(HRI)对于在日常生活中广泛使用机器人至关重要。机器人最终将能够通过有效的社会互动来履行人类文明的各种职责。创建直接且易于理解的界面,以与机器人开始在个人工作区中扩散时与机器人互动至关重要。通常,与模拟机器人的交互显示在屏幕上。虚拟现实(VR)是一个更具吸引力的替代方法,它为视觉提示提供了更像现实世界中看到的线索。在这项研究中,我们介绍了Jubileo,这是一种机器人的动画面孔,并使用人类机器人社会互动领域的各种研究和应用开发工具。Jubileo Project不仅提供功能齐全的开源物理机器人。它还提供了一个全面的框架,可以通过VR接口进行操作,从而为HRI应用程序测试带来沉浸式环境,并明显更好地部署速度。
translated by 谷歌翻译
高效用顺序模式采矿(HUSPM)是具有许多真实世界应用的知识发现和数据分析中的重要活动。在某些情况下,HUSPM无法提供出色的措施来预测会发生什么。高效用顺序规则挖掘(HUSRM)发现了高实用性和高置信顺序规则,从而使其可以解决HUSPM中的问题。所有现有的HUSRM算法旨在找到与现实不一致的,可能会产生假的HUSRS的高级序列顺序规则(HUSRS)。因此,在本文中,我们制定了高公用事业完全订购的顺序规则挖掘的问题,并提出了两种称为petalsr和totalsr+的新型算法,旨在识别所有高实用性完全订购的顺序规则(HTSRS)。 TotalSR创建了一个实用表,该表可以有效地计算前提支持和一个效用前缀总和列表,该列表可以计算序列中O(1)时间中的剩余实用程序。我们还引入了左侧的扩展策略,该策略可以利用反单调性属性来使用信心修剪策略。 TotalSr还可以在实用程序上限的修剪策略的帮助下大大减少搜索空间,从而避免更加有意义的计算。此外,TotalSr+使用辅助前期记录表来更有效地发现HTSR。最后,在真实和合成数据集上都有许多实验结果,表明topalsR比较少的修剪策略的算法要高得多,并且在运行时间和可伸缩性方面,topalsr+效率更高。
translated by 谷歌翻译
赤道等离子体气泡(EPB)是低密度血浆的羽毛,它们从F层的底部升至Exosphere。 EPB是无线电波闪烁的已知原因,可以降低与航天器的通信。我们构建了一个随机的森林回归剂,以预测和预测IBI处理器在船上检测到的EPB [0-1]的可能性。我们使用从2014年到2021年的8年群数据,并将数据从时间序列转换为5维空间,该空间包括纬度,经度,MLT,年份和年度。我们还增加了KP,F10.7厘米和太阳风速。关于地理位置,当地时间,季节和太阳活动的EPB的观察主要与现有工作一致,而链接的地磁活动尚不清楚。该预测的精度为88%,并且在EPB特异性时空尺度上的性能很好。这证明了XGBoost方法能够成功捕获群EPB的气候和每日变异性。由于电离层内的局部和随机特征,捕获每日方差长期以来一直逃避研究人员。我们利用Shapley值来解释该模型并深入了解EPB的物理学。我们发现,随着太阳能速度的增加,EPB的概率降低。我们还确定了EPB概率周围的尖峰。这两个见解直接源自XGBoost和Shapley技术。
translated by 谷歌翻译
公平性是一个标准,重点是评估不同人口组的算法性能,它引起了自然语言处理,推荐系统和面部识别的关注。由于医学图像样本中有很多人口统计学属性,因此了解公平的概念,熟悉不公平的缓解技术,评估算法的公平程度并认识到医疗图像分析(媒体)中的公平问题中的挑战很重要。在本文中,我们首先给出了公平性的全面和精确的定义,然后通过在媒体中引入当前使用的技术中使用的技术。之后,我们列出了包含人口统计属性的公共医疗图像数据集,以促进公平研究并总结有关媒体公平性的当前算法。为了帮助更好地理解公平性,并引起人们对媒体中与公平性有关的问题的关注,进行了实验,比较公平性和数据失衡之间的差异,验证各种媒体任务中不公平的存在,尤其是在分类,细分和检测以及评估不公平缓解算法的有效性。最后,我们以媒体公平性的机会和挑战得出结论。
translated by 谷歌翻译
个性化联合学习(PFL)是一种新的联邦学习(FL)方法,可解决分布式用户设备(UES)生成的数据集的异质性问题。但是,大多数现有的PFL实现都依赖于同步培训来确保良好的收敛性能,这可能会导致严重的散乱问题,在这种情况下,训练时间大量延长了最慢的UE。为了解决这个问题,我们提出了一种半同步PFL算法,被称为半同步个性化的FederatedAveraging(Perfeds $^2 $),而不是移动边缘网络。通过共同优化无线带宽分配和UE调度策略,它不仅减轻了Straggler问题,而且还提供了收敛的培训损失保证。我们根据每回合的参与者数量和回合数量来得出Perfeds2收敛速率的上限。在此基础上,可以使用分析解决方案解决带宽分配问题,并且可以通过贪婪算法获得UE调度策略。实验结果与同步和异步PFL算法相比,验证了Perfeds2在节省训练时间和保证训练损失的收敛方面的有效性。
translated by 谷歌翻译
我们提供了证据表明,学到的密度功能理论(``dft')的力场已准备好进行基态催化剂发现。我们的关键发现是,尽管预测的力与地面真相有很大差异,但使用从超过50 \%的评估系统中使用RPBE功能的能量与使用RPBE功能相似或较低能量的力量的力量与使用RPBE功能相似或较低的力量放松。这具有令人惊讶的含义,即学习的潜力可能已经准备好在挑战性的催化系统中替换DFT,例如在Open Catalyst 2020数据集中发现的电位。此外,我们表明,在局部谐波能量表面上具有与目标DFT能量相同的局部谐波能量表面训练的力场也能够在50 \%的情况下找到较低或相似的能量结构。与在真实能量和力量训练的标准模型相比,这种``简易电位''的收敛步骤更少,这进一步加速了计算。它的成功说明了一个关键:即使模型具有高力误差,学到的电位也可以定位能量最小值。结构优化的主要要求仅仅是学到的电位具有正确的最小值。由于学到的电位与系统大小的速度快速且尺寸为线性,因此我们的结果开辟了快速找到大型系统基础状态的可能性。
translated by 谷歌翻译