用于图形组合优化问题的神经网络溶剂的端到端培训,例如旅行销售人员问题(TSP)最近看到了感兴趣的激增,但在几百节节点的图表中保持棘手和效率低下。虽然最先进的学习驱动的方法对于TSP在培训的古典索引时与古典求解器密切相关,但它们无法通过实际尺度的实际情况概括到更大的情况。这项工作提出了一个端到端的神经组合优化流水线,统一几个卷纸,以确定促进比在训练中看到的实例的概括的归纳偏差,模型架构和学习算法。我们的受控实验提供了第一个原则上调查这种零拍摄的概括,揭示了超越训练数据的推断需要重新思考从网络层和学习范例到评估协议的神经组合优化流水线。此外,我们分析了深入学习的最近进步,通过管道的镜头路由问题,并提供新的方向,以刺激未来的研究。
translated by 谷歌翻译