现有的多尺度解决方案会导致仅增加接受场大小的风险,同时忽略小型接受场。因此,有效构建自适应神经网络以识别各种空间尺度对象是一个具有挑战性的问题。为了解决这个问题,我们首先引入一个新的注意力维度,即除了现有的注意力维度(例如渠道,空间和分支)之外,并提出了一个新颖的选择性深度注意网络,以对称地处理各种视觉中的多尺度对象任务。具体而言,在给定神经网络的每个阶段内的块,即重新连接,输出层次功能映射共享相同的分辨率但具有不同的接收场大小。基于此结构属性,我们设计了一个舞台建筑模块,即SDA,其中包括树干分支和类似SE的注意力分支。躯干分支的块输出融合在一起,以通过注意力分支指导其深度注意力分配。根据提出的注意机制,我们可以动态选择不同的深度特征,这有助于自适应调整可变大小输入对象的接收场大小。这样,跨块信息相互作用会导致沿深度方向的远距离依赖关系。与其他多尺度方法相比,我们的SDA方法结合了从以前的块到舞台输出的多个接受场,从而提供了更广泛,更丰富的有效接收场。此外,我们的方法可以用作其他多尺度网络以及注意力网络的可插入模块,并创造为SDA- $ x $ net。它们的组合进一步扩展了有效的接受场的范围,可以实现可解释的神经网络。我们的源代码可在\ url {https://github.com/qingbeiguo/sda-xnet.git}中获得。
translated by 谷歌翻译
In this paper, we propose a novel primal-dual proximal splitting algorithm (PD-PSA), named BALPA, for the composite optimization problem with equality constraints, where the loss function consists of a smooth term and a nonsmooth term composed with a linear mapping. In BALPA, the dual update is designed as a proximal point for a time-varying quadratic function, which balances the implementation of primal and dual update and retains the proximity-induced feature of classic PD-PSAs. In addition, by this balance, BALPA eliminates the inefficiency of classic PD-PSAs for composite optimization problems in which the Euclidean norm of the linear mapping or the equality constraint mapping is large. Therefore, BALPA not only inherits the advantages of simple structure and easy implementation of classic PD-PSAs but also ensures a fast convergence when these norms are large. Moreover, we propose a stochastic version of BALPA (S-BALPA) and apply the developed BALPA to distributed optimization to devise a new distributed optimization algorithm. Furthermore, a comprehensive convergence analysis for BALPA and S-BALPA is conducted, respectively. Finally, numerical experiments demonstrate the efficiency of the proposed algorithms.
translated by 谷歌翻译
Pandemic(epidemic) modeling, aiming at disease spreading analysis, has always been a popular research topic especially following the outbreak of COVID-19 in 2019. Some representative models including SIR-based deep learning prediction models have shown satisfactory performance. However, one major drawback for them is that they fall short in their long-term predictive ability. Although graph convolutional networks (GCN) also perform well, their edge representations do not contain complete information and it can lead to biases. Another drawback is that they usually use input features which they are unable to predict. Hence, those models are unable to predict further future. We propose a model that can propagate predictions further into the future and it has better edge representations. In particular, we model the pandemic as a spatial-temporal graph whose edges represent the transition of infections and are learned by our model. We use a two-stream framework that contains GCN and recursive structures (GRU) with an attention mechanism. Our model enables mobility analysis that provides an effective toolbox for public health researchers and policy makers to predict how different lock-down strategies that actively control mobility can influence the spread of pandemics. Experiments show that our model outperforms others in its long-term predictive power. Moreover, we simulate the effects of certain policies and predict their impacts on infection control.
translated by 谷歌翻译
Federated Learning (FL) is pervasive in privacy-focused IoT environments since it enables avoiding privacy leakage by training models with gradients instead of data. Recent works show the uploaded gradients can be employed to reconstruct data, i.e., gradient leakage attacks, and several defenses are designed to alleviate the risk by tweaking the gradients. However, these defenses exhibit weak resilience against threatening attacks, as the effectiveness builds upon the unrealistic assumptions that deep neural networks are simplified as linear models. In this paper, without such unrealistic assumptions, we present a novel defense, called Refiner, instead of perturbing gradients, which refines ground-truth data to craft robust data that yields sufficient utility but with the least amount of privacy information, and then the gradients of robust data are uploaded. To craft robust data, Refiner promotes the gradients of critical parameters associated with robust data to close ground-truth ones while leaving the gradients of trivial parameters to safeguard privacy. Moreover, to exploit the gradients of trivial parameters, Refiner utilizes a well-designed evaluation network to steer robust data far away from ground-truth data, thereby alleviating privacy leakage risk. Extensive experiments across multiple benchmark datasets demonstrate the superior defense effectiveness of Refiner at defending against state-of-the-art threats.
translated by 谷歌翻译
Automatic parsing of human anatomies at instance-level from 3D computed tomography (CT) scans is a prerequisite step for many clinical applications. The presence of pathologies, broken structures or limited field-of-view (FOV) all can make anatomy parsing algorithms vulnerable. In this work, we explore how to exploit and conduct the prosperous detection-then-segmentation paradigm in 3D medical data, and propose a steerable, robust, and efficient computing framework for detection, identification, and segmentation of anatomies in CT scans. Considering complicated shapes, sizes and orientations of anatomies, without lose of generality, we present the nine degrees-of-freedom (9-DoF) pose estimation solution in full 3D space using a novel single-stage, non-hierarchical forward representation. Our whole framework is executed in a steerable manner where any anatomy of interest can be directly retrieved to further boost the inference efficiency. We have validated the proposed method on three medical imaging parsing tasks of ribs, spine, and abdominal organs. For rib parsing, CT scans have been annotated at the rib instance-level for quantitative evaluation, similarly for spine vertebrae and abdominal organs. Extensive experiments on 9-DoF box detection and rib instance segmentation demonstrate the effectiveness of our framework (with the identification rate of 97.0% and the segmentation Dice score of 90.9%) in high efficiency, compared favorably against several strong baselines (e.g., CenterNet, FCOS, and nnU-Net). For spine identification and segmentation, our method achieves a new state-of-the-art result on the public CTSpine1K dataset. Last, we report highly competitive results in multi-organ segmentation at FLARE22 competition. Our annotations, code and models will be made publicly available at: https://github.com/alibaba-damo-academy/Med_Query.
translated by 谷歌翻译
This paper considers mixed traffic consisting of connected automated vehicles equipped with vehicle-to-everything (V2X) connectivity and human-driven vehicles. A control strategy is proposed for communicating pairs of connected automated vehicles, where the two vehicles regulate their longitudinal motion by responding to each other, and, at the same time, stabilize the human-driven traffic between them. Stability analysis is conducted to find stabilizing controllers, and simulations are used to show the efficacy of the proposed approach. The impact of the penetration of connectivity and automation on the string stability of traffic is quantified. It is shown that, even with moderate penetration, connected automated vehicle pairs executing the proposed controllers achieve significant benefits compared to when these vehicles are disconnected and controlled independently.
translated by 谷歌翻译
Reinforcement learning often suffer from the sparse reward issue in real-world robotics problems. Learning from demonstration (LfD) is an effective way to eliminate this problem, which leverages collected expert data to aid online learning. Prior works often assume that the learning agent and the expert aim to accomplish the same task, which requires collecting new data for every new task. In this paper, we consider the case where the target task is mismatched from but similar with that of the expert. Such setting can be challenging and we found existing LfD methods can not effectively guide learning in mismatched new tasks with sparse rewards. We propose conservative reward shaping from demonstration (CRSfD), which shapes the sparse rewards using estimated expert value function. To accelerate learning processes, CRSfD guides the agent to conservatively explore around demonstrations. Experimental results of robot manipulation tasks show that our approach outperforms baseline LfD methods when transferring demonstrations collected in a single task to other different but similar tasks.
translated by 谷歌翻译
Bird's-Eye-View (BEV) 3D Object Detection is a crucial multi-view technique for autonomous driving systems. Recently, plenty of works are proposed, following a similar paradigm consisting of three essential components, i.e., camera feature extraction, BEV feature construction, and task heads. Among the three components, BEV feature construction is BEV-specific compared with 2D tasks. Existing methods aggregate the multi-view camera features to the flattened grid in order to construct the BEV feature. However, flattening the BEV space along the height dimension fails to emphasize the informative features of different heights. For example, the barrier is located at a low height while the truck is located at a high height. In this paper, we propose a novel method named BEV Slice Attention Network (BEV-SAN) for exploiting the intrinsic characteristics of different heights. Instead of flattening the BEV space, we first sample along the height dimension to build the global and local BEV slices. Then, the features of BEV slices are aggregated from the camera features and merged by the attention mechanism. Finally, we fuse the merged local and global BEV features by a transformer to generate the final feature map for task heads. The purpose of local BEV slices is to emphasize informative heights. In order to find them, we further propose a LiDAR-guided sampling strategy to leverage the statistical distribution of LiDAR to determine the heights of local slices. Compared with uniform sampling, LiDAR-guided sampling can determine more informative heights. We conduct detailed experiments to demonstrate the effectiveness of BEV-SAN. Code will be released.
translated by 谷歌翻译
Following the success of the transformer architecture in the natural language domain, transformer-like architectures have been widely applied to the domain of symbolic music recently. Symbolic music and text, however, are two different modalities. Symbolic music contains multiple attributes, both absolute attributes (e.g., pitch) and relative attributes (e.g., pitch interval). These relative attributes shape human perception of musical motifs. These important relative attributes, however, are mostly ignored in existing symbolic music modeling methods with the main reason being the lack of a musically-meaningful embedding space where both the absolute and relative embeddings of the symbolic music tokens can be efficiently represented. In this paper, we propose the Fundamental Music Embedding (FME) for symbolic music based on a bias-adjusted sinusoidal encoding within which both the absolute and the relative attributes can be embedded and the fundamental musical properties (e.g., translational invariance) are explicitly preserved. Taking advantage of the proposed FME, we further propose a novel attention mechanism based on the relative index, pitch and onset embeddings (RIPO attention) such that the musical domain knowledge can be fully utilized for symbolic music modeling. Experiment results show that our proposed model: RIPO transformer which utilizes FME and RIPO attention outperforms the state-of-the-art transformers (i.e., music transformer, linear transformer) in a melody completion task. Moreover, using the RIPO transformer in a downstream music generation task, we notice that the notorious degeneration phenomenon no longer exists and the music generated by the RIPO transformer outperforms the music generated by state-of-the-art transformer models in both subjective and objective evaluations.
translated by 谷歌翻译
Learning precoding policies with neural networks enables low complexity online implementation, robustness to channel impairments, and joint optimization with channel acquisition. However, existing neural networks suffer from high training complexity and poor generalization ability when they are used to learn to optimize precoding for mitigating multi-user interference. This impedes their use in practical systems where the number of users is time-varying. In this paper, we propose a graph neural network (GNN) to learn precoding policies by harnessing both the mathematical model and the property of the policies. We first show that a vanilla GNN cannot well-learn pseudo-inverse of channel matrix when the numbers of antennas and users are large, and is not generalizable to unseen numbers of users. Then, we design a GNN by resorting to the Taylor's expansion of matrix pseudo-inverse, which allows for capturing the importance of the neighbored edges to be aggregated that is crucial for learning precoding policies efficiently. Simulation results show that the proposed GNN can well learn spectral efficient and energy efficient precoding policies in single- and multi-cell multi-user multi-antenna systems with low training complexity, and can be well generalized to the numbers of users.
translated by 谷歌翻译