With the development of technology and sharing economy, Airbnb as a famous short-term rental platform, has become the first choice for many young people to select. The issue of Airbnb's pricing has always been a problem worth studying. While the previous studies achieve promising results, there are exists deficiencies to solve. Such as, (1) the feature attributes of rental are not rich enough; (2) the research on rental text information is not deep enough; (3) there are few studies on predicting the rental price combined with the point of interest(POI) around the house. To address the above challenges, we proposes a multi-source information embedding(MSIE) model to predict the rental price of Airbnb. Specifically, we first selects the statistical feature to embed the original rental data. Secondly, we generates the word feature vector and emotional score combination of three different text information to form the text feature embedding. Thirdly, we uses the points of interest(POI) around the rental house information generates a variety of spatial network graphs, and learns the embedding of the network to obtain the spatial feature embedding. Finally, this paper combines the three modules into multi source rental representations, and uses the constructed fully connected neural network to predict the price. The analysis of the experimental results shows the effectiveness of our proposed model.
translated by 谷歌翻译
图对比度学习(GCL)一直是图形自学学习的新兴解决方案。 GCL的核心原理是在正视图中降低样品之间的距离,但在负视图中增加样品之间的距离。在实现有希望的性能的同时,当前的GCL方法仍然受到两个局限性:(1)增强的不可控制的有效性,该图扰动可能会产生针对语义和图形数据的特征流程的无效视图; (2)不可靠的二进制对比理由,对于非欧几里得图数据而言,难以确定构造观点的积极性和负面性。为了应对上述局限性,我们提出了一个新的对比度学习范式,即图形软对比度学习(GSCL),该范例通过排名的社区无需任何增强和二进制对比符合性,在较细性的范围内进行对比度学习。 GSCL建立在图接近的基本假设上,即连接的邻居比遥远的节点更相似。具体而言,我们在配对和列表的封闭式排名中,以保留附近的相对排名关系。此外,随着邻里规模的指数增长,考虑了更多的啤酒花,我们提出了提高学习效率的邻里抽样策略。广泛的实验结果表明,我们提出的GSCL可以始终如一地在各种公共数据集上实现与GCL相当复杂的各种公共数据集的最新性能。
translated by 谷歌翻译
资金机构在很大程度上依赖于领域专家与研究建议之间的主题匹配来分配提案审查员。随着建议越来越跨学科,概述提案的跨学科性质是一项挑战,此后,找到具有适当专业知识的专家审阅者。解决这一挑战的重要步骤是准确对建议的跨学科标签进行分类。现有的方法论和申请相关文献,例如文本分类和提案分类,不足以共同解决跨学科建议数据引入的三个关键独特问题:1)提案的纪律标签的层次结构,谷物,例如,从信息科学到AI,再到AI的基础。 2)在提案中起着不同作用的各种主要文本部分的异质语义; 3)提案的数量在非学科和跨学科研究之间存在不平衡。我们可以同时解决该提案的跨学科性质时的三个问题吗?为了回答这个问题,我们提出了一个层次混音多标签分类框架,我们称之为H-Mixup。 H-Mixup利用基于变压器的语义信息提取器和基于GCN的跨学科知识提取器来解决第一期和第二个问题。 H-Mixup开发了Wold级混音,Word级cutmix,歧管混音和文档级混音的融合训练方法,以解决第三期。
translated by 谷歌翻译
多标签学习(MLL)从每个与多个标签相关联的示例中学习,其中每个培训示例的所有相关标签的高成本对于现实世界应用程序都有挑战。为了应对挑战,我们研究了单个阳性多标签学习(SPMLL),其中每个示例仅带有一个相关标签,并表明人们可以成功地学习一个理论上接地的多标签分类器,以解决该问题。在本文中,提出了一种名为{\提出的}的新型SPMLL方法,即提出了具有标签增强的单阳性多标签学习。具体而言,得出了无偏的风险估计器,可以保证该估计器大致融合到完全监督学习的最佳风险最小化器中,并表明每个实例的一个正标能够足以训练预测模型。然后,通过将潜在软标签恢复为标签增强过程,建立相应的经验风险估计器,其中潜在软标签的后验密度近似于通过推动模型对变异beta beta密度参数。基准数据集上的实验验证了所提出方法的有效性。
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
Witnessing the impressive achievements of pre-training techniques on large-scale data in the field of computer vision and natural language processing, we wonder whether this idea could be adapted in a grab-and-go spirit, and mitigate the sample inefficiency problem for visuomotor driving. Given the highly dynamic and variant nature of the input, the visuomotor driving task inherently lacks view and translation invariance, and the visual input contains massive irrelevant information for decision making, resulting in predominant pre-training approaches from general vision less suitable for the autonomous driving task. To this end, we propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving. We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos. The proposed PPGeo is performed in two stages to support effective self-supervised training. In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input. In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only. As such, the pre-trained visual encoder is equipped with rich driving policy related representations and thereby competent for multiple visuomotor driving tasks. Extensive experiments covering a wide span of challenging scenarios have demonstrated the superiority of our proposed approach, where improvements range from 2% to even over 100% with very limited data. Code and models will be available at https://github.com/OpenDriveLab/PPGeo.
translated by 谷歌翻译
In this paper, we investigate the possibility of the backward-differential-flow-like algorithm which starts from the minimum of convexification version of the polynomial. We apply the heat evolution convexification approach through Gaussian filtering, which is actually an accumulation version of Steklov's regularization. We generalize the fingerprint theory which was proposed in the theory of computer vision by A.L. Yuille and T. Poggio in 1980s, in particular their fingerprint trajectory equation, to characterize the evolution of minimizers across the scale. On the other hand, we propose the "seesaw" polynomials $p(x|s)$ and we find a seesaw differential equation $\frac{\partial p(x|s)}{\,ds}=-\frac{1}{p''(x)}$ to characterize the evolution of global minimizer $x^*(s)$ of $p(x|s)$ while varying $s$. Essentially, both the fingerprints $\mathcal{FP}_2$ and $\mathcal{FP}_3$ of $p(x)$, consisting of the zeros of $\frac{\partial^2 p(x,t)}{\partial x^2}$ and $\frac{\partial^3 p(x,t)}{\partial x^3}$, respectively, are independent of seesaw coefficient $s$, upon which we define the Confinement Zone and Escape Zone. Meanwhile, varying $s$ will monotonically condition the location of global minimizer of $p(x|s)$, and all these location form the Attainable Zone. Based on these concepts, we prove that the global minimizer $x^*$ of $p(x)$ can be inversely evolved from the global minimizer of its convexification polynomial $p(x,t_0)$ if and only if $x^*$ is included in the Escape Zone. In particular, we give detailed analysis for quartic and six degree polynomials.
translated by 谷歌翻译
Inferring missing links or detecting spurious ones based on observed graphs, known as link prediction, is a long-standing challenge in graph data analysis. With the recent advances in deep learning, graph neural networks have been used for link prediction and have achieved state-of-the-art performance. Nevertheless, existing methods developed for this purpose are typically discriminative, computing features of local subgraphs around two neighboring nodes and predicting potential links between them from the perspective of subgraph classification. In this formalism, the selection of enclosing subgraphs and heuristic structural features for subgraph classification significantly affects the performance of the methods. To overcome this limitation, this paper proposes a novel and radically different link prediction algorithm based on the network reconstruction theory, called GraphLP. Instead of sampling positive and negative links and heuristically computing the features of their enclosing subgraphs, GraphLP utilizes the feature learning ability of deep-learning models to automatically extract the structural patterns of graphs for link prediction under the assumption that real-world graphs are not locally isolated. Moreover, GraphLP explores high-order connectivity patterns to utilize the hierarchical organizational structures of graphs for link prediction. Our experimental results on all common benchmark datasets from different applications demonstrate that the proposed method consistently outperforms other state-of-the-art methods. Unlike the discriminative neural network models used for link prediction, GraphLP is generative, which provides a new paradigm for neural-network-based link prediction.
translated by 谷歌翻译
Neural operators, which emerge as implicit solution operators of hidden governing equations, have recently become popular tools for learning responses of complex real-world physical systems. Nevertheless, the majority of neural operator applications has thus far been data-driven, which neglects the intrinsic preservation of fundamental physical laws in data. In this paper, we introduce a novel integral neural operator architecture, to learn physical models with fundamental conservation laws automatically guaranteed. In particular, by replacing the frame-dependent position information with its invariant counterpart in the kernel space, the proposed neural operator is by design translation- and rotation-invariant, and consequently abides by the conservation laws of linear and angular momentums. As applications, we demonstrate the expressivity and efficacy of our model in learning complex material behaviors from both synthetic and experimental datasets, and show that, by automatically satisfying these essential physical laws, our learned neural operator is not only generalizable in handling translated and rotated datasets, but also achieves state-of-the-art accuracy and efficiency as compared to baseline neural operator models.
translated by 谷歌翻译