这项工作的目标是通过扫描平台捕获的数据进行3D重建和新颖的观看综合,该平台在城市室外环境中常设世界映射(例如,街景)。给定一系列由摄像机和扫描仪通过室外场景的摄像机和扫描仪进行的序列,我们产生可以从中提取3D表面的模型,并且可以合成新颖的RGB图像。我们的方法扩展了神经辐射字段,已经证明了用于在受控设置中的小型场景中的逼真新颖的图像,用于利用异步捕获的LIDAR数据,用于寻址捕获图像之间的曝光变化,以及利用预测的图像分段来监督密度。在光线指向天空。这三个扩展中的每一个都在街道视图数据上的实验中提供了显着的性能改进。我们的系统产生最先进的3D表面重建,并与传统方法(例如〜Colmap)和最近的神经表示(例如〜MIP-NERF)相比,合成更高质量的新颖视图。
translated by 谷歌翻译
虽然神经辐射场(NERF)已经证明了令人印象深刻的视图合成结果对物体和小型空间区域的结果,但它们在“无界”场景上挣扎,其中相机可以在任何方向上点,并且内容在任何距离处都存在。在此设置中,现有的形式的类似形式模型通常会产生模糊或低分辨率渲染(由于附近和远处物体的不平衡细节和规模),慢慢训练,并且由于任务的固有歧义而可能表现出伪影从一小部分图像重建大场景。我们介绍了MIP-NERF(一个NERF变体,用于解决采样和混叠的NERF变体),其使用非线性场景参数化,在线蒸馏和基于新的失真的常规程序来克服无限性场景所呈现的挑战。我们的模型,我们将“MIP-NERF 360”为瞄准相机围绕一点旋转360度的瞄准场景,与MIP NERF相比将平均平方误差减少54%,并且能够产生逼真的合成视图和用于高度复杂,无限性的现实景区的详细深度图。
translated by 谷歌翻译
神经辐射字段(NERF)是一种用于高质量新颖观看综合的技术从一系列姿势输入图像。与大多数视图合成方法一样,NERF使用TONEMAPPED的低动态范围(LDR)作为输入;这些图像已经通过流畅的相机管道处理,平滑细节,剪辑突出显示,并扭曲了原始传感器数据的简单噪声分布。我们修改NERF以直接在线性原始图像直接培训,保持场景的完整动态范围。通过从生成的NERF渲染原始输出图像,我们可以执行新颖的高动态范围(HDR)视图综合任务。除了改变相机的观点外,我们还可以在事实之后操纵焦点,曝光和调度率。虽然单个原始图像显然比后处理的原始图像显着更大,但我们表明NERF对原始噪声的零平均分布非常强大。当优化许多嘈杂的原始输入(25-200)时,NERF会产生一个场景表示,如此准确的,即其呈现的新颖视图优于在同一宽基线输入图像上运行的专用单个和多像深生物丹机。因此,我们调用Rawnerf的方法可以从近黑暗中捕获的极其嘈杂的图像中重建场景。
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
高分辨率气象雷达图像的可用性是有效的预测和决策。在超越传统雷达覆盖范围之外,生成模型已成为一种重要的合成能力,融合更普遍的数据来源,例如卫星图像和数值天气模型,进入准确的雷达样产品。在这里,我们展示了使用量子辅助模型来增强传统卷积神经网络的方法,用于全球合成天气雷达中的生成任务。我们表明Quantum Kernels原则上可以根据相关底层数据上的古典学习机来表现出基本上更复杂的任务。我们的结果建立了合成气象雷达作为量子计算能力的有效启发式基准,并在高影响力的相关问题上设定了详细量子优势基准测试的阶段。
translated by 谷歌翻译
功率曲线捕获风速与特定风力涡轮机的输出功率之间的关系。这种功能的准确回归模型在监控,维护,设计和规划方面证明是有用的。然而,在实践中,测量并不总是对应于理想曲线:电源缩减将显示为(附加)功能组件。这种多值关系不能通过常规回归建模,并且在预处理期间通常去除相关数据。目前的工作表明了一种替代方法,可以在缩减电力数据中推断多值关系。使用基于人群的方法,将概率回归模型的重叠混合应用于从操作风电场内的涡轮机记录的信号。示出了模型,以便在整个人口中提供精确的实际功率数据表示。
translated by 谷歌翻译
Logistic回归是广泛使用的统计模型,以描述数据集中的二进制响应变量和预测变量之间的关系。它通常用于机器学习以识别重要的预测因子变量。此任务,变量选择,通常是拟合由$ \ ell_1 $和$ \ ell_ {2} ^ {2} $惩罚的凸组合规范化的逻辑回归模型。由于现代大数据集可以包含数十亿到数十亿的预测变量,因此可变选择方法取决于有效且强大的优化算法来执行良好。然而,可变选择的最先进的算法并不传统地设计用于处理大数据集;它们的规模差或易于产生不可靠的数值结果。因此,在大数据集上执行变量选择,它仍然具有挑战性,而无需获得足够的计算资源和昂贵的计算资源。在本文中,我们提出了一种解决这些缺点的非线性原始双向算法。具体而言,我们提出了一种迭代算法,其通过$ O(t(m,n)\ log(1 / \ epsilon))$业务,其中$ \ epsilon \在(0,1)$表示公差和$ t(m,n)$表示在数据集中执行矩阵矢量乘法所需的算术运算数,每个$ m个包含$ n $功能。这一结果提高了$ O的已知复杂性(\ min(m ^ 2n,mn ^ 2)\ log(1 / \ epsilon))$,因为一阶优化方法,如经典的原始 - 双混合梯度或向前-Backward拆分方法。
translated by 谷歌翻译
尖峰神经网络的事件驱动性质使它们具有生物学上可符合的和比人工神经网络更节能。在这项工作中,我们展示了二维视野中对象的运动检测。这里呈现的网络架构是生物学卓越的,并使用CMOS模拟泄漏整合和灭火神经元和超低功耗多层RRAM突触。具体的跨晶体管纤维Spice模拟表明,所提出的结构可以在二维视野中准确可靠地检测物体的复杂运动。
translated by 谷歌翻译
生物数据和知识库越来越依赖语义Web技术以及使用知识图表进行数据集成,检索和联合查询。我们提出了一种用于自动学习生物测定的解决方案。我们的解决方案使自动化学的问题与分类与聚类并置,其中两种方法在方法复杂度频谱的相对端。在特征上建模我们的问题,我们发现聚类解决方案显着优于最先进的神经网络的最先进的分类方法。这种新颖的贡献基于两个因素:1)在数据优于具有复杂语义建模的替代方法之后密切建模的学习目标;2)自动学习生物测定达到近83%的高性能F1,这对我们的知识是首次报告的任务标准化评估提供了强大的基准模型。
translated by 谷歌翻译
我们解决了通过在线后退地平线控制(RHC)的框架来控制控制未知线性动态系统的问题,以时代变化的成本函数。我们考虑控制算法不知道真正的系统模型的设置,并且只能访问固定长度(不与控制范围内的增长)预览未来成本函数。我们使用动态遗憾度量的算法表征了算法的性能,该算法被定义为算法产生的累积成本与后视行动中最佳动作顺序之间的差异。我们提出了两个不同的在线RHC算法来解决这个问题,即确定的等价RHC(CE-RHC)算法和乐观RHC(O-RHC)算法。我们表明,在模型估计的标准稳定假设下,CE-RHC算法实现$ \ Mathcal {O}(T ^ {2/3})$动态遗憾。然后,我们将此结果扩展到通过提出O-RHC算法仅适用于真实系统模型的稳定假设。我们表明O-RHC算法实现$ \ Mathcal {O}(T ^ {2/3})$动态遗憾,但有一些额外的计算。
translated by 谷歌翻译