在本文中,我们使用两个无监督的学习算法的组合介绍了路边激光雷达物体检测的解决方案。 3D点云数据首先将球形坐标转换成球形坐标并使用散列函数填充到方位角网格矩阵中。之后,RAW LIDAR数据被重新排列成空间 - 时间数据结构,以存储范围,方位角和强度的信息。基于强度信道模式识别,应用动态模式分解方法将点云数据分解成低级背景和稀疏前景。三角算法根据范围信息,自动发现分割值以将移动目标与静态背景分开。在强度和范围背景减法之后,将使用基于密度的检测器检测到前景移动物体,并编码到状态空间模型中以进行跟踪。所提出的模型的输出包括车辆轨迹,可以实现许多移动性和安全应用。该方法针对商业流量数据收集平台进行了验证,并证明了对基础设施激光雷达对象检测的高效可靠的解决方案。与之前的方法相比,该方法直接处理散射和离散点云,所提出的方法可以建立3D测量数据的复杂线性关系较小,这捕获了我们经常需要的空间时间结构。
translated by 谷歌翻译
本文提出了一种机器学习增强的纵向扫描线方法,用于从大角度交通摄像机中提取车辆轨迹。通过将空间颞映射(STMAP)分解到稀疏前景和低秩背景,应用动态模式分解(DMD)方法来提取车辆股线。通过调整两个普遍的深度学习架构,设计了一个名为Res-Unet +的深神经网络。 RES-UNET +神经网络显着提高了基于STMAP的车辆检测的性能,DMD模型提供了许多有趣的见解,了解由Stmap保留的潜在空间结构的演变。与先前的图像处理模型和主流语义分割深神经网络进行比较模型输出。经过彻底的评估后,证明该模型对许多具有挑战性的因素来说是准确和强大的。最后但并非最不重要的是,本文从根本上解决了NGSIM轨迹数据中发现了许多质量问题。清除清洁的高质量轨迹数据,以支持交通流量和微观车辆控制的未来理论和建模研究。该方法是用于基于视频的轨迹提取的可靠解决方案,并且具有广泛的适用性。
translated by 谷歌翻译
紧急车辆(EMV)在应对城市地区的医疗紧急情况和火灾爆发等时间关键电话方面起着至关重要的作用。现有的EMV调度方法通常会根据历史流量数据数据和设计流量信号相应地优化路线;但是,我们仍然缺乏一种系统的方法来解决EMV路由和流量信号控制之间的耦合。在本文中,我们提出了EMVLIGHT,这是一个分散的加固学习(RL)框架,用于联合动态EMV路由和交通信号的先发制人。我们采用具有政策共享和空间折现因子的多代理优势行为者 - 批评方法。该框架通过多级RL代理的创新设计和新型的基于压力的奖励功能来解决EMV导航和交通信号控制之间的耦合。拟议的方法使EMVLIGHT能够学习网络级的合作交通信号相阶段阶段策略,这些策略不仅减少EMV旅行时间,而且还缩短了非EMV的旅行时间。基于仿真的实验表明,EMVLIGHT可使EMV旅行时间减少$ 42.6 \%$,以及与现有方法相比,$ 23.5 \%$短的平均旅行时间。
translated by 谷歌翻译
AI方法做出预测和决策的兴起导致人们对更有解释的人工智能(XAI)方法的迫切需求。 XAI的一种常见方法是产生事后解释,解释了为什么黑匣子ML模型做出一定的预测。正式的事后解释方法为为什么做出预测以及为什么不进行其他预测提供了简洁的理由。但是这些方法假定特征是独立且均匀分布的。尽管这意味着“为什么”解释是正确的,但它们可能比要求更长。这也意味着“为什么不”解释可能会被怀疑,因为他们所依赖的反例可能没有意义。在本文中,我们展示了如何运用背景知识来提供更简洁的“为什么”形式解释,这些解释大概是人类更容易解释的,并给出了更准确的“为什么不”解释。此外,我们还展示了如何使用现有的规则归纳技术从数据集中有效提取背景信息,以及如何报告使用哪些背景信息来做出解释,从而使人类是否怀疑解释的正确性,可以检查它。 。
translated by 谷歌翻译
尽管深层生成模型在图像处理,自然语言处理和强化学习方面已经成功,但由于其梯度估计过程的较高差异,涉及离散随机变量的培训仍然具有挑战性。蒙特卡洛是大多数降低方法中使用的常见解决方案。但是,这涉及耗时的重采样和多功能评估。我们提出了一个张开的直通(GST)估计器,以减少方差,而不会产生重新采样开销。该估计器的灵感来自直通牙龈 - 软胶的基本属性。我们确定这些特性,并通过消融研究表明它们是必不可少的。实验表明,与在两个离散的深层生成建模任务:MNIST-VAE和LISTOPS上相比,所提出的GST估计器与强基础相比具有更好的性能。
translated by 谷歌翻译
尽管电子健康记录是生物医学研究的丰富数据来源,但这些系统并未在医疗环境中统一地实施,并且由于医疗保健碎片化和孤立的电子健康记录之间缺乏互操作性,可能缺少大量数据。考虑到缺少数据的案例的删除可能会在随后的分析中引起严重的偏见,因此,一些作者更喜欢采用多重插补策略来恢复缺失的信息。不幸的是,尽管几项文献作品已经通过使用现在可以自由研究的任何不同的多个归档算法记录了有希望的结果,但尚无共识,MI算法效果最好。除了选择MI策略之外,归纳算法及其应用程序设置的选择也至关重要且具有挑战性。在本文中,受鲁宾和范布伦的开创性作品的启发,我们提出了一个方法学框架,可以应用于评估和比较多种多个插补技术,旨在选择用于计算临床研究工作中最有效的推断。我们的框架已被应用于验证和扩展较大的队列,这是我们在先前的文献研究中提出的结果,我们在其中评估了关键患者的描述符和Covid-19的影响在2型糖尿病患者中的影响,其数据为2型糖尿病,其数据为2型糖尿病由国家共同队列合作飞地提供。
translated by 谷歌翻译
基于梯度的高参数调整的优化方法可确保理论收敛到固定解决方案时,对于固定的上层变量值,双光线程序的下层级别强烈凸(LLSC)和平滑(LLS)。对于在许多机器学习算法中调整超参数引起的双重程序,不满足这种情况。在这项工作中,我们开发了一种基于不精确度(VF-IDCA)的基于依次收敛函数函数算法。我们表明,该算法从一系列的超级参数调整应用程序中实现了无LLSC和LLS假设的固定解决方案。我们的广泛实验证实了我们的理论发现,并表明,当应用于调子超参数时,提出的VF-IDCA会产生较高的性能。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
通用形态(UNIMORPH)项目是一项合作的努力,可为数百种世界语言实例化覆盖范围的标准化形态拐角。该项目包括两个主要的推力:一种无独立的特征架构,用于丰富的形态注释,并以各种语言意识到该模式的各种语言的带注释数据的类型级别资源。本文介绍了过去几年对几个方面的扩张和改进(自McCarthy等人(2020年)以来)。众多语言学家的合作努力增加了67种新语言,其中包括30种濒危语言。我们已经对提取管道进行了一些改进,以解决一些问题,例如缺少性别和马克龙信息。我们还修改了模式,使用了形态学现象所需的层次结构,例如多肢体协议和案例堆叠,同时添加了一些缺失的形态特征,以使模式更具包容性。鉴于上一个UniMorph版本,我们还通过16种语言的词素分割增强了数据库。最后,这个新版本通过通过代表来自metphynet的派生过程的实例丰富数据和注释模式来推动将衍生物形态纳入UniMorph中。
translated by 谷歌翻译
估算干预措施对患者结果的影响是个性化医学的关键方面之一。他们的推断经常受到训练数据仅包括给药治疗的结果,而不是用于替代治疗(所谓的反事实结果)。基于观察数据的这种情况,即〜对于连续和二进制结果变量,不适用干预的数据,建议了几种方法。然而,患者结果通常以时间对次的数据记录,如果在观察期内未发生事件,则包括右审查的事件时间。尽管他们的重要性巨大,时间令人难度的数据很少用于治疗优化。我们建议一种名为Bites的方法(用于存活数据的平衡个体治疗效果),其将特定的半导体Cox损耗与治疗平衡的深神经网络相结合;即,我们使用积分概率度量(IPM)正常化治疗和未治疗的患者之间的差异。我们在仿真研究中展示了这种方法优于现有技术。此外,我们在应用于乳腺癌患者队列的应用中证明可以基于六个常规参数进行激素治疗。我们成功验证了独立的队列中的这一发现。提供叮咬作为易于使用的Python实现。
translated by 谷歌翻译