本文介绍了蒙古人的高质量开源文本到语音(TTS)合成数据集,蒙古是一种低资源的语言,该语言是全球超过1000万人所讲的。该数据集名为MNTTS,由一位22岁专业女性蒙古播音员说的大约8个小时的录音录音组成。它是第一个开发的公开数据集,旨在促进学术界和行业中的蒙古TTS应用程序。在本文中,我们通过描述数据集开发程序并面临挑战来分享我们的经验。为了证明数据集的可靠性,我们建立了一个基于FastSpeech2模型和HIFI-GAN Vocoder的强大的非自动回调基线系统,并使用主观平均意见分数(MOS)和实时因素(RTF)指标对其进行了评估。评估结果表明,在我们的数据集上训练的功能强大的基线系统可在4和RTF上获得MOS,大约3.30美元\ times10^{ - 1} $,这使其适用于实际使用。数据集,培训配方和预估计的TTS模型是免费可用的\ footNote {\ label {github} \ url {https://github.com/walker.com/walker-hyf/mntts}}}。
translated by 谷歌翻译
Self-similarity is valuable to the exploration of non-local textures in single image super-resolution (SISR). Researchers usually assume that the importance of non-local textures is positively related to their similarity scores. In this paper, we surprisingly found that when repairing severely damaged query textures, some non-local textures with low-similarity which are closer to the target can provide more accurate and richer details than the high-similarity ones. In these cases, low-similarity does not mean inferior but is usually caused by different scales or orientations. Utilizing this finding, we proposed a Global Learnable Attention (GLA) to adaptively modify similarity scores of non-local textures during training instead of only using a fixed similarity scoring function such as the dot product. The proposed GLA can explore non-local textures with low-similarity but more accurate details to repair severely damaged textures. Furthermore, we propose to adopt Super-Bit Locality-Sensitive Hashing (SB-LSH) as a preprocessing method for our GLA. With the SB-LSH, the computational complexity of our GLA is reduced from quadratic to asymptotic linear with respect to the image size. In addition, the proposed GLA can be integrated into existing deep SISR models as an efficient general building block. Based on the GLA, we constructed a Deep Learnable Similarity Network (DLSN), which achieves state-of-the-art performance for SISR tasks of different degradation types (e.g. blur and noise). Our code and a pre-trained DLSN have been uploaded to GitHub{\dag} for validation.
translated by 谷歌翻译
Learning with noisy labels is a vital topic for practical deep learning as models should be robust to noisy open-world datasets in the wild. The state-of-the-art noisy label learning approach JoCoR fails when faced with a large ratio of noisy labels. Moreover, selecting small-loss samples can also cause error accumulation as once the noisy samples are mistakenly selected as small-loss samples, they are more likely to be selected again. In this paper, we try to deal with error accumulation in noisy label learning from both model and data perspectives. We introduce mean point ensemble to utilize a more robust loss function and more information from unselected samples to reduce error accumulation from the model perspective. Furthermore, as the flip images have the same semantic meaning as the original images, we select small-loss samples according to the loss values of flip images instead of the original ones to reduce error accumulation from the data perspective. Extensive experiments on CIFAR-10, CIFAR-100, and large-scale Clothing1M show that our method outperforms state-of-the-art noisy label learning methods with different levels of label noise. Our method can also be seamlessly combined with other noisy label learning methods to further improve their performance and generalize well to other tasks. The code is available in https://github.com/zyh-uaiaaaa/MDA-noisy-label-learning.
translated by 谷歌翻译
Detecting abnormal crowd motion emerging from complex interactions of individuals is paramount to ensure the safety of crowds. Crowd-level abnormal behaviors (CABs), e.g., counter flow and crowd turbulence, are proven to be the crucial causes of many crowd disasters. In the recent decade, video anomaly detection (VAD) techniques have achieved remarkable success in detecting individual-level abnormal behaviors (e.g., sudden running, fighting and stealing), but research on VAD for CABs is rather limited. Unlike individual-level anomaly, CABs usually do not exhibit salient difference from the normal behaviors when observed locally, and the scale of CABs could vary from one scenario to another. In this paper, we present a systematic study to tackle the important problem of VAD for CABs with a novel crowd motion learning framework, multi-scale motion consistency network (MSMC-Net). MSMC-Net first captures the spatial and temporal crowd motion consistency information in a graph representation. Then, it simultaneously trains multiple feature graphs constructed at different scales to capture rich crowd patterns. An attention network is used to adaptively fuse the multi-scale features for better CAB detection. For the empirical study, we consider three large-scale crowd event datasets, UMN, Hajj and Love Parade. Experimental results show that MSMC-Net could substantially improve the state-of-the-art performance on all the datasets.
translated by 谷歌翻译
Many NLP tasks can be regarded as a selection problem from a set of options, such as classification tasks, multi-choice question answering, etc. Textual entailment (TE) has been shown as the state-of-the-art (SOTA) approach to dealing with those selection problems. TE treats input texts as premises (P), options as hypotheses (H), then handles the selection problem by modeling (P, H) pairwise. Two limitations: first, the pairwise modeling is unaware of other options, which is less intuitive since humans often determine the best options by comparing competing candidates; second, the inference process of pairwise TE is time-consuming, especially when the option space is large. To deal with the two issues, this work first proposes a contextualized TE model (Context-TE) by appending other k options as the context of the current (P, H) modeling. Context-TE is able to learn more reliable decision for the H since it considers various context. Second, we speed up Context-TE by coming up with Parallel-TE, which learns the decisions of multiple options simultaneously. Parallel-TE significantly improves the inference speed while keeping comparable performance with Context-TE. Our methods are evaluated on three tasks (ultra-fine entity typing, intent detection and multi-choice QA) that are typical selection problems with different sizes of options. Experiments show our models set new SOTA performance; particularly, Parallel-TE is faster than the pairwise TE by k times in inference. Our code is publicly available at https://github.com/jiangshdd/LearningToSelect.
translated by 谷歌翻译
We present a data-driven framework to automate the vectorization and machine interpretation of 2D engineering part drawings. In industrial settings, most manufacturing engineers still rely on manual reads to identify the topological and manufacturing requirements from drawings submitted by designers. The interpretation process is laborious and time-consuming, which severely inhibits the efficiency of part quotation and manufacturing tasks. While recent advances in image-based computer vision methods have demonstrated great potential in interpreting natural images through semantic segmentation approaches, the application of such methods in parsing engineering technical drawings into semantically accurate components remains a significant challenge. The severe pixel sparsity in engineering drawings also restricts the effective featurization of image-based data-driven methods. To overcome these challenges, we propose a deep learning based framework that predicts the semantic type of each vectorized component. Taking a raster image as input, we vectorize all components through thinning, stroke tracing, and cubic bezier fitting. Then a graph of such components is generated based on the connectivity between the components. Finally, a graph convolutional neural network is trained on this graph data to identify the semantic type of each component. We test our framework in the context of semantic segmentation of text, dimension and, contour components in engineering drawings. Results show that our method yields the best performance compared to recent image, and graph-based segmentation methods.
translated by 谷歌翻译
With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.
translated by 谷歌翻译
The success of deep neural networks requires both high annotation quality and massive data. However, the size and the quality of a dataset are usually a trade-off in practice, as data collection and cleaning are expensive and time-consuming. Therefore, automatic noisy label detection (NLD) techniques are critical to real-world applications, especially those using crowdsourcing datasets. As this is an under-explored topic in automatic speaker verification (ASV), we present a simple but effective solution to the task. First, we compare the effectiveness of various commonly used metric learning loss functions under different noise settings. Then, we propose two ranking-based NLD methods, inter-class inconsistency and intra-class inconsistency ranking. They leverage the inconsistent nature of noisy labels and show high detection precision even under a high level of noise. Our solution gives rise to both efficient and effective cleaning of large-scale speaker recognition datasets.
translated by 谷歌翻译
Nerf-based Generative models have shown impressive capacity in generating high-quality images with consistent 3D geometry. Despite successful synthesis of fake identity images randomly sampled from latent space, adopting these models for generating face images of real subjects is still a challenging task due to its so-called inversion issue. In this paper, we propose a universal method to surgically fine-tune these NeRF-GAN models in order to achieve high-fidelity animation of real subjects only by a single image. Given the optimized latent code for an out-of-domain real image, we employ 2D loss functions on the rendered image to reduce the identity gap. Furthermore, our method leverages explicit and implicit 3D regularizations using the in-domain neighborhood samples around the optimized latent code to remove geometrical and visual artifacts. Our experiments confirm the effectiveness of our method in realistic, high-fidelity, and 3D consistent animation of real faces on multiple NeRF-GAN models across different datasets.
translated by 谷歌翻译
Recently, a surge of high-quality 3D-aware GANs have been proposed, which leverage the generative power of neural rendering. It is natural to associate 3D GANs with GAN inversion methods to project a real image into the generator's latent space, allowing free-view consistent synthesis and editing, referred as 3D GAN inversion. Although with the facial prior preserved in pre-trained 3D GANs, reconstructing a 3D portrait with only one monocular image is still an ill-pose problem. The straightforward application of 2D GAN inversion methods focuses on texture similarity only while ignoring the correctness of 3D geometry shapes. It may raise geometry collapse effects, especially when reconstructing a side face under an extreme pose. Besides, the synthetic results in novel views are prone to be blurry. In this work, we propose a novel method to promote 3D GAN inversion by introducing facial symmetry prior. We design a pipeline and constraints to make full use of the pseudo auxiliary view obtained via image flipping, which helps obtain a robust and reasonable geometry shape during the inversion process. To enhance texture fidelity in unobserved viewpoints, pseudo labels from depth-guided 3D warping can provide extra supervision. We design constraints aimed at filtering out conflict areas for optimization in asymmetric situations. Comprehensive quantitative and qualitative evaluations on image reconstruction and editing demonstrate the superiority of our method.
translated by 谷歌翻译