In the framework of online convex optimization, most iterative algorithms require the computation of projections onto convex sets, which can be computationally expensive. To tackle this problem HK12 proposed the study of projection-free methods that replace projections with less expensive computations. The most common approach is based on the Frank-Wolfe method, that uses linear optimization computation in lieu of projections. Recent work by GK22 gave sublinear adaptive regret guarantees with projection free algorithms based on the Frank Wolfe approach. In this work we give projection-free algorithms that are based on a different technique, inspired by Mhammedi22, that replaces projections by set-membership computations. We propose a simple lazy gradient-based algorithm with a Minkowski regularization that attains near-optimal adaptive regret bounds. For general convex loss functions we improve previous adaptive regret bounds from $O(T^{3/4})$ to $O(\sqrt{T})$, and further to tight interval dependent bound $\tilde{O}(\sqrt{I})$ where $I$ denotes the interval length. For strongly convex functions we obtain the first poly-logarithmic adaptive regret bounds using a projection-free algorithm.
translated by 谷歌翻译
因果图发现和因果效应估计是因果推断的两个基本任务。尽管已经为每个任务开发了许多方法,但共同应用这些方法时会出现统计挑战:在同一数据上运行因果发现算法后,估算因果关系效应,导致“双重浸入”,使经典置信区间的覆盖范围无效。为此,我们开发了有效的可获得后发现推断的工具。一个关键的贡献是贪婪等效搜索(GES)算法的随机版本,该算法允许对经典置信区间进行有效的有限样本校正。在经验研究中,我们表明,因果发现和随后的推断算法的幼稚组合通常会导致高度膨胀的误导率。同时,我们的嘈杂的GES方法提供了可靠的覆盖范围控制,同时获得比数据拆分更准确的因果图恢复。
translated by 谷歌翻译
在训练数据的分布中评估时,学到的模型和政策可以有效地概括,但可以在分布输入输入的情况下产生不可预测且错误的输出。为了避免在部署基于学习的控制算法时分配变化,我们寻求一种机制将代理商限制为类似于受过训练的国家和行动的机制。在控制理论中,Lyapunov稳定性和控制不变的集合使我们能够保证稳定系统周围系统的控制器,而在机器学习中,密度模型使我们能够估算培训数据分布。我们可以将这两个概念结合起来,产生基于学习的控制算法,这些算法仅使用分配动作将系统限制为分布状态?在这项工作中,我们建议通过结合Lyapunov稳定性和密度估计的概念来做到这一点,引入Lyapunov密度模型:控制Lyapunov函数和密度模型的概括,这些函数和密度模型可以保证代理商在其整个轨迹上保持分布的能力。
translated by 谷歌翻译
机械通气是ICU中最广泛使用的疗法中最广泛的疗法之一。然而,尽管在麻醉与科迪德相关的终身支持中具有广泛的应用,但仍有许多有害挑战。我们将这些视为控制问题:呼吸机必须根据规定的气道压力轨迹进出患者的肺部。基于PID方法的行业标准控制器既不是最佳的也不是强大的。我们的数据驱动方法学习通过在从呼吸机收集的数据上培训的模拟器本身进行培训来控制侵入式呼吸机。该方法优于流行的加固学习算法,甚至比PID更精确且强大地控制物理呼吸机。这些结果强调了有效的数据驱动方法可以用于侵入性通风,并表明更通用的通风形式(例如,无侵入性,适应性)也可能是可享受的。
translated by 谷歌翻译
The broad usage of mobile devices nowadays, the sensitiveness of the information contained in them, and the shortcomings of current mobile user authentication methods are calling for novel, secure, and unobtrusive solutions to verify the users' identity. In this article, we propose TypeFormer, a novel Transformer architecture to model free-text keystroke dynamics performed on mobile devices for the purpose of user authentication. The proposed model consists in Temporal and Channel Modules enclosing two Long Short-Term Memory (LSTM) recurrent layers, Gaussian Range Encoding (GRE), a multi-head Self-Attention mechanism, and a Block-Recurrent structure. Experimenting on one of the largest public databases to date, the Aalto mobile keystroke database, TypeFormer outperforms current state-of-the-art systems achieving Equal Error Rate (EER) values of 3.25% using only 5 enrolment sessions of 50 keystrokes each. In such way, we contribute to reducing the traditional performance gap of the challenging mobile free-text scenario with respect to its desktop and fixed-text counterparts. Additionally, we analyse the behaviour of the model with different experimental configurations such as the length of the keystroke sequences and the amount of enrolment sessions, showing margin for improvement with more enrolment data. Finally, a cross-database evaluation is carried out, demonstrating the robustness of the features extracted by TypeFormer in comparison with existing approaches.
translated by 谷歌翻译
Recent research has demonstrated the capability of behavior signals captured by smartphones and wearables for longitudinal behavior modeling. However, there is a lack of a comprehensive public dataset that serves as an open testbed for fair comparison among algorithms. Moreover, prior studies mainly evaluate algorithms using data from a single population within a short period, without measuring the cross-dataset generalizability of these algorithms. We present the first multi-year passive sensing datasets, containing over 700 user-years and 497 unique users' data collected from mobile and wearable sensors, together with a wide range of well-being metrics. Our datasets can support multiple cross-dataset evaluations of behavior modeling algorithms' generalizability across different users and years. As a starting point, we provide the benchmark results of 18 algorithms on the task of depression detection. Our results indicate that both prior depression detection algorithms and domain generalization techniques show potential but need further research to achieve adequate cross-dataset generalizability. We envision our multi-year datasets can support the ML community in developing generalizable longitudinal behavior modeling algorithms.
translated by 谷歌翻译
底面图像中的自动化视盘(OD)和光杯(OC)分割与有效测量垂直杯盘比率(VCDR)是一种在眼科中常用的生物标志物,以确定胶状神经神经病变的程度。通常,这是使用粗到1的深度学习算法来解决的,其中第一阶段近似于OD,第二阶段使用该区域的作物来预测OD/OC掩码。尽管这种方法广泛应用于文献中,但尚无研究来分析其对结果的真正贡献。在本文中,我们介绍了使用5个公共数据库的不同粗到精细设计的全面分析,包括从标准分割的角度以及估算青光眼评估的VCDR。我们的分析表明,这些算法不一定超过标准的多级单阶段模型,尤其是当这些算法是从足够大而多样化的训练集中学习的。此外,我们注意到粗糙阶段比精细的OD分割结果更好,并且在第二阶段提供OD监督对于确保准确的OC掩码至关重要。此外,在多数据集设置上训练的单阶段和两阶段模型都表现出对成对的结果,甚至比其他最先进的替代方案更好,同时排名第一的OD/OC分段。最后,我们评估了VCDR预测的模型与Airogs图像子集中的六个眼科医生相比,以在观察者间可变性的背景下理解它们。我们注意到,即使从单阶段和粗至细节模型中恢复的VCDR估计值也可以获得良好的青光眼检测结果,即使它们与专家的手动测量不高度相关。
translated by 谷歌翻译
对于移动机器人而言,与铰接式对象的交互是一项具有挑战性但重要的任务。为了应对这一挑战,我们提出了一条新型的闭环控制管道,该管道将负担能力估计的操纵先验与基于采样的全身控制相结合。我们介绍了完全反映了代理的能力和体现的代理意识提供的概念,我们表明它们的表现优于其最先进的对应物,这些对应物仅以最终效果的几何形状为条件。此外,发现闭环负担推论使代理可以将任务分为多个非连续运动,并从失败和意外状态中恢复。最后,管道能够执行长途移动操作任务,即在现实世界中开放和关闭烤箱,成功率很高(开放:71%,关闭:72%)。
translated by 谷歌翻译
可靠,高分辨率气候和天气数据的可用性对于为气候适应和缓解的长期决策提供了重要的意见,并指导对极端事件的快速响应。预测模型受到计算成本的限制,因此通常以粗空间分辨率预测数量。统计降尺度可以提供高采样低分辨率数据的有效方法。在这个领域,经常使用计算机视觉中超分辨率域中的方法成功地应用了深度学习。尽管经常取得令人信服的结果,但这种模型在预测物理变量时通常会违反保护法。为了节省重要的物理量,我们开发的方法可以通过深层缩减模型来确保物理约束,同时还根据传统指标提高其性能。我们介绍了约束网络的两种方法:添加到神经网络末尾的重新归一化层,并连续的方法随着增加的采样因子的增加而扩展。我们使用ERE5重新分析数据显示了我们在不同流行架构和更高采样因子上的方法的适用性。
translated by 谷歌翻译
最近报道了登革热爆发的数量急剧增加,气候变化可能会延长该疾病的地理传播。在这种情况下,本文展示了神经网络方法如何结合登革热和COVID-19数据以及外部因素(例如社交行为或气候变量),以开发可以改善我们的知识并为健康提供有用工具的预测模型决策者。通过使用具有不同社会和自然参数的神经网络,在本文中,我们定义了一个相关模型,我们通过该模型表明,Covid-19和登革热的病例数量非常相似。然后,我们通过将模型扩展到纳入两种疾病的长期短期记忆模型(LSTM)来说明我们的模型的相关性,并在缺乏足够的登革热数据的国家 /地区使用COVID-19估计登革热感染的数据。
translated by 谷歌翻译