我们呈现Nureality,一个虚拟现实'VR'环境,旨在测试车辆行为在城市交叉路口自主车辆和行人之间的相互作用中沟通意图的效果。在这个项目中,我们专注于表达行为作为行人的手段,即易于认识到AV运动的潜在意图。 VR是用于测试这些情况的理想工具,因为它可以被沉浸,并将受试者放入这些潜在的危险情景中而没有风险。 Nureality提供了一种新颖的和沉浸式虚拟现实环境,包括众多视觉细节(道路和建筑纹理,停放的汽车,摇曳的树肢)以及听觉细节(鸟儿唧唧喳喳,距离距离的汽车)。在这些文件中,我们呈现Nureality环境,其10个独特的车辆行为场景,以及每个场景的虚幻引擎和Autodesk Maya源文件。这些文件在www.nureality.org上公开发布为开源,以支持学术界,研究临界公平互动。
translated by 谷歌翻译
仇恨语音在线的检测已成为一项重要的任务,因为伤害,淫秽和侮辱性内容等冒犯性语言可能会危害边缘化的人或团体。本文介绍了Indo-European语言中的仇恨语音和冒犯内容识别的共同任务任务1A和1B的任务1A和1B的实验和结果。在整个竞争中,对各种子特派团评估了不同的自然语言处理模型的成功。我们通过竞争对手基于单词和字符级别的复发神经网络测试了不同的模型,并通过竞争对手基于提供的数据集进行了学习方法。在已经用于实验的测试模型中,基于转移学习的模型在两个子任务中获得了最佳结果。
translated by 谷歌翻译
音频和图像处理等许多应用程序显示,稀疏表示是一种强大而有效的信号建模技术。找到一个最佳词典,同时生成的数据和最小近似误差是由字典学习(DL)接近的难题。我们研究DL如何在信号集中检测信号集中的异常样本。在本文中,我们使用特定的DL配方,其寻求均匀的稀疏表示模型来使用K-SVD型算法检测数据集中大多数样本的基础子空间。数值模拟表明,人们可以有效地使用此产生的子空间来辨别常规数据点的异常。
translated by 谷歌翻译
MRI扫描时间减少通常通过并行成像方法实现,通常基于逆图像空间(A.K.A.K空间)的均匀下采样和具有多个接收器线圈的同时信号接收。 Grappa方法通过跨越所有线圈的相邻获取信号的线性组合来插入缺失的k空间信号,并且可以通过k空间中的卷积来描述。最近,介绍了一种称为RAKI的更广泛的方法。 Raki是一种深入学习方法,将Grappa推广到附加的卷积层,在此期间应用非线性激活功能。这使得卷积神经网络能够实现缺失信号的非线性估计。与Grappa类似,Raki中的卷积核心使用从自动校准信号(ACS)获得的特定训练样本进行培训。 Raki与Grappa相比提供了卓越的重建质量,然而,由于其未知参数的数量增加,通常需要更多的AC。为了克服这一限制,本研究调查了训练数据对标准2D成像重建质量的影响,特别关注其金额和对比信息。此外,评估迭代k空间插值方法(araki),包括通过初始的格拉普重建训练数据增强,并通过迭代培训改进卷积滤波器。仅使用18,20和25个ACS线(8%),通过抑制在加速度因子R = 4和r = 5时发生的残余人工制品,并且与Grappa相比,通过定量质量指标加下划线,产生强烈的噪声抑制。与相约束的组合进一步改善。此外,在预扫描校准的情况下,伊拉克基显示比GRAPPA和RAKI更好的性能,并且在训练和缺乏采样的数据之间强烈不同的对比度。
translated by 谷歌翻译
分类模型是物理资产管理技术的基本组成部分,如结构健康监测(SHM)系统和数字双胞胎。以前的工作介绍了\ Texit {基于风险的主动学习},一种在线方法,用于开发考虑它们所应用的决策支持上下文的统计分类器。通过优先查询数据标签来考虑决策,根据\ Textit {完美信息的预期值}(EVPI)。虽然通过采用基于风险的主动学习方法获得了几种好处,但包括改进的决策性能,但算法遭受与引导查询过程的采样偏差有关的问题。这种采样偏差最终表现为在主动学习后的后期阶段的决策表现的下降,这又对应于丢失的资源/实用程序。目前的论文提出了两种新方法来抵消采样偏置的影响:\纺织{半监督学习},以及\ extentit {鉴别的分类模型}。首先使用合成数据集进行这些方法,然后随后应用于实验案例研究,具体地,Z24桥数据集。半监督学习方法显示有变量性能;具有稳健性,对采样偏置依赖于对每个数据集选择模型所选择的生成分布的适用性。相反,判别分类器被证明对采样偏压的影响具有优异的鲁棒性。此外,发现在监控运动期间进行的检查数,因此可以通过仔细选择决策支持监测系统中使用的统计分类器的仔细选择来减少。
translated by 谷歌翻译
在漂亮的广义框架下,过去的世纪已经广泛研究了线性预测问题。强大的统计文献中的最新进展允许我们通过手工(MOM)中位数的棱镜分析古典线性模型的强大版本。以零碎的方式结合这些方法可能导致临时程序,以及限制每个个人捐款的受限制理论结论可能不再有效。为了完全应对这些挑战,在这项研究中,我们提供了一个统一的强大框架,包括在希尔伯特空间上具有广泛的线性预测问题,与通用丢失功能相结合。值得注意的是,我们不需要对偏远数据点的分布($ \ mathcal {o} $)的任何假设,也不需要依赖于依赖的支持的紧凑性($ \ mathcal {i} $)。在双规范的温和条件下,我们展示了用于拼盘级别$ \ epsilon $,这些估算器达到$ O(\ max \ left \ {| \ mathcal {o} | ^ {1/2} n ^ {-1/2},| \ mathcal {i} | ^ {1/2} n ^ {-1} n ^ { - 1} \ rick \} + \ epsilon)$,匹配文献中最着名的速率。此速率比$ O的经典速率略慢(n ^ { - 1/2})$,表明我们需要在错误率方面支付价格以获得强大的估计。此外,我们表明,在额外的假设下,可以提高该速率以实现所​​谓的“快速速率”。
translated by 谷歌翻译
图形神经网络(GNN)在许多领域中显示出优异的应用,其中数据基本上表示为图(例如,化学,生物学,推荐系统)。在该静脉中,通信网络包括许多以图形结构方式(例如,拓扑,配置,交通流量)自然表示的许多基本组件。该职位文章将GNNS作为用于建模,控制和管理通信网络的基本工具。 GNN表示新一代的数据驱动模型,可以准确地学习和再现真实网络后面的复杂行为。因此,这种模型可以应用于各种网络用例,例如规划,在线优化或故障排除。 GNN在传统的神经网络上的主要优点在于在培训期间应用于其他网络和配置时的前所未有的泛化能力,这是实现用于网络实际数据驱动解决方案的关键特征。本文包括关于GNN的简要教程及其对通信网络的可能应用。为了展示这项技术的潜力,我们展示了两种用例,分别应用于有线和无线网络的最先进的GNN模型。最后,我们深入研究了这一小说研究区的关键开放挑战和机会。
translated by 谷歌翻译
变异因素之间的相关性在现实数据中普遍存在。机器学习算法可能会受益于利用这种相关性,因为它们可以提高噪声数据的预测性能。然而,通常这种相关性不稳定(例如,它们可能在域,数据集或应用程序之间发生变化),我们希望避免利用它们。解剖学方法旨在学习捕获潜伏子空间变化不同因素的表示。常用方法涉及最小化潜伏子空间之间的相互信息,使得每个潜在的底层属性。但是,当属性相关时,这会失败。我们通过强制执行可用属性上的子空间之间的独立性来解决此问题,这允许我们仅删除不导致的依赖性,这些依赖性是由于训练数据中存在的相关结构。我们通过普发的方法实现这一目标,以最小化关于分类变量的子空间之间的条件互信息(CMI)。我们首先在理论上展示了CMI最小化是对高斯数据线性问题的稳健性解剖的良好目标。然后,我们基于MNIST和Celeba在现实世界数据集上应用我们的方法,并表明它会在相关偏移下产生脱屑和强大的模型,包括弱监督设置。
translated by 谷歌翻译
由于它们所需的大量集中,最深度增强学习算法的状态是对渐近性能的大量集中的效率低。由哺乳动物海马的启发的episodic加强学习(ERL)算法通常使用扩展的内存系统从过去的事件开始学习,以克服这个样本效率问题。然而,这种内存增强通常用作仅仅是缓冲区,从中绘制了孤立的过去经验,以便以离线方式学习(例如,重播)。这里,我们证明包括从集扩展抽样顺序导出的所获取的内存内容中的偏差来提高弹性控制算法的样本和存储器效率。我们在觅食任务中测试了我们的顺序焦点控制(SEC)模型,以显示存储和使用集成剧集作为事件序列导致更快的学习,与较少的内存要求相反,与隔离的缓冲区相比只有事件。我们还研究了内存约束的影响,忘记了SEC算法的顺序和非顺序版本。此外,我们讨论了类似海马的快速记忆系统如何在哺乳动物大脑中引导慢速皮质和皮质学习习惯的习惯。
translated by 谷歌翻译
法律法规识别的任务(LSI)旨在确定与法律案件的给定的事实或证据的描述相关的法律法规。现有方法仅利用事实和法律文章的文本内容来指导此类任务。但是,案例文件和法律法规之间的引文网络是一个丰富的附加信息来源,这是现有模型的考虑。在这项工作中,我们采取第一步利用LSI任务的文本和法律引文网络。我们为这项任务策划了一个大型新型数据集,包括来自印度若干主要法院的案例,以及来自印度刑法(IPC)的法规。将法规和培训文档建模为异构图,我们提出的模型Lesicin可以学习丰富的文本和图形功能,并且还可以调整本身来关联这些功能。此后,该模型可用于感应地预测测试文档(其图形特征不可用的新节点)和法规(现有节点)之间的链接。关于数据集的广泛实验表明,我们的模型通过利用图形结构以及文本特征来舒适地舒适地优于若干最先进的基线。数据集和我们的代码可用于https://github.com/law-ai/lesicin。
translated by 谷歌翻译