通过生物手段自动验证一个人的身份是在每天的日常活动,如在机场访问银行服务和安全控制的一个重要应用。为了提高系统的可靠性,通常使用几个生物识别设备。这种组合系统被称为多模式生物测定系统。本文报道生物安全DS2(访问控制)评估由英国萨里大学举办的活动,包括面部,指纹和虹膜的个人认证生物特征的框架内进行基准研究,在媒体针对物理访问控制中的应用-size建立一些500人。虽然多峰生物测定是公调查对象,不存在基准融合算法的比较。朝着这个目标努力,我们设计了两组实验:质量依赖性和成本敏感的评估。质量依赖性评价旨在评估融合算法如何可以在变化的原始图像的质量主要是由于设备的变化来执行。在对成本敏感的评价,另一方面,研究了一种融合算法可以如何执行给定的受限的计算和在软件和硬件故障的存在,从而导致错误,例如失败到获取和失败到匹配。由于多个捕捉设备可用,融合算法应该能够处理这种非理想但仍然真实的场景。在这两种评价中,各融合算法被提供有从每个生物统计比较子系统以及两个模板和查询数据的质量度量得分。在活动的号召的响应证明是非常令人鼓舞的,与提交22个融合系统。据我们所知,这是第一次尝试基准品质为基础多模态融合算法。
translated by 谷歌翻译
随着自然语言处理领域的最新发展,在使用不同架构的神经机翻译中的使用情况上升了。变压器架构用于实现最先进的准确性,但它们是训练的非常昂贵的昂贵。每个人都不能拥有由高端GPU和其他资源组成的等待。我们在低计算资源上培训我们的模型,并调查结果。正如预期的那样,变形金刚表现出其他架构,但结果有一些令人惊讶的结果。由更多编码器和解码器组成的变形金刚需要花更多的时间来训练,但有更少的BLEU分数。LSTM在实验中表现良好,比较少花时间训练而不是变压器,适合在具有时间限制的情况下使用。
translated by 谷歌翻译