世界各地的隐私法律和法规的景观是复杂而不断变化的。国家和超国家法律,协议,法令和其他政府发行的规则构成了公司必须遵循的拼凑而成才能在国际上进行运作。为了检查该拼凑而成的状态和演变,我们介绍了1,043条隐私法,法规和准则的政府隐私指示语料库或GPI语料库,涵盖了182个司法管辖区。该语料库可以对法律焦点进行大规模定量和定性检查。我们检查了创建GPI的时间分布,并说明了过去50年中隐私立法的急剧增加,尽管较细粒度的检查表明,增加的速度取决于GPIS所说的个人数据类型。我们的探索还表明,大多数隐私法分别解决了相对较少的个人数据类型,这表明全面的隐私立法仍然很少见。此外,主题建模结果显示了GPI中常见主题的普遍性,例如财务,医疗保健和电信。最后,我们将语料库释放到研究界,以促进进一步的研究。
translated by 谷歌翻译
在尝试“解释”机器学习模型的预测中,研究人员提出了数百种技术,以归因于认为重要的功能的预测。虽然这些归属常常被声称持有改善人类“了解”模型的潜力,但令人惊讶地小的工作明确评估了对这种愿望的进步。在本文中,我们进行了一个众群研究,参与者与欺骗检测模型进行互动,以区分真实和假酒店评论。他们受到模拟新鲜评论模型的挑战,并以降低最初预测的类的概率的目标。成功的操纵将导致对抗性示例。在培训(但不是测试)阶段,突出显示输入跨度以传达Parience。通过我们的评估,我们观察到,对于线性袋式模型,与无解释控制相比,可以在训练期间访问特征系数的参与者能够在测试阶段中更大减少模型置信度。对于基于BERT的分类器,流行的本地解释不会提高它们在无法解释案例上降低模型信心的能力。值得注意的是,当由培训的线性模型的(全局)归属的(全局)归属给出的解释以模仿BERT模型,人们可以有效地操纵模型。
translated by 谷歌翻译
可以使用X射线自由电子激光器的强脉冲和短脉冲直接通过单次相干衍射成像直接观察到自由飞行中孤立的纳米样品的结构和动力学。广角散射图像甚至编码样品的三维形态信息,但是该信息的检索仍然是一个挑战。到目前为止,只有通过与高度约束模型拟合,需要对单镜头实现有效的三维形态重建,这需要有关可能的几何形状的先验知识。在这里,我们提出了一种更通用的成像方法。依赖于允许凸多面体描述的任何样品形态的模型,我们从单个银纳米颗粒中重建广角衍射模式。除了具有高对称性的已知结构动机外,我们还检索了以前无法访问的不完美形状和聚集物。我们的结果为单个纳米颗粒的真实3D结构确定以及最终的超快纳米级动力学的3D电影开辟了新的途径。
translated by 谷歌翻译
我们提出了一种新的方法,用于从室内环境中的RGB-D序列进行连接3D多对象跟踪和重建。为此,我们在每个帧中检测并重建对象,同时预测密集的对应关系映射到归一化对象空间中。我们利用这些对应关系来告知图神经网络,以解决所有对象的最佳,时间一致的7-DOF姿势轨迹。我们方法的新颖性是两个方面:首先,我们提出了一种基于图的新方法,用于随着时间的流逝而进行区分姿势估计,以学习最佳的姿势轨迹。其次,我们提出了沿时间轴的重建和姿势估计的联合公式,以实现健壮和几何一致的多对象跟踪。为了验证我们的方法,我们引入了一个新的合成数据集,其中包含2381个唯一室内序列,总共有60k渲染的RGB-D图像,用于多对象跟踪,并带有移动对象和来自合成3D-Front数据集的相机位置。我们证明,与现有最新方法相比,我们的方法将所有测试序列的累积MOTA得分提高了24.8%。在关于合成和现实世界序列的几个消融中,我们表明我们的基于图的完全端到端学习方法可以显着提高跟踪性能。
translated by 谷歌翻译
基于用户交互数据的优化推荐系统主要被视为处理选择偏差的问题,其中大多数现有工作都假设来自不同用户的交互是独立的。但是,已经表明,实际上用户反馈通常受到其他用户的早期交互的影响,例如通过平均评分,每项项目的视图或销售量等。这种现象被称为潮流效应。与以前的文献相反,我们认为潮流效应不应被视为统计偏见的问题。实际上,我们证明了这种效果使单个相互作用及其样本平均无偏见。然而,我们表明它可以使估计量不一致,从而引入了一系列与相关性估计的融合的不同问题。我们的理论分析研究了潮流效应提出一致性问题的条件,并探讨了减轻这些问题的几种方法。这项工作旨在表明,潮流效应带来了一个不足的开放问题,从根本上讲,这与建议的选择偏见从根本上截然不同。
translated by 谷歌翻译
地震处理通常需要抑制收集数据时出现的倍数。为了解决这些工件,从业人员通常依靠基于ra的转换算法作为移民后的调节。但是,这种传统方法既耗时又依赖参数,使其相当复杂。在这项工作中,我们提出了一种基于学习的替代方案,可提供竞争成果,同时降低其用法的复杂性,从而使其适用性民主化。尽管仅接受合成学培训,但在推断复杂的现场数据时,我们在推断复杂的现场数据时会观察到出色的性能。此外,广泛的实验表明,我们的建议可以保留数据的固有特征,避免了不希望的过度平滑结果,同时删除了倍数。最后,我们对模型进行了深入的分析,在此分析中,我们可以确定主要的超参数具有物理事件的影响。据我们所知,这项研究的开创者将神经网络的拆箱用于幻想过程,从而帮助用户了解网络内部运行。
translated by 谷歌翻译
成语是小的,可重复使用的贝叶斯网络(BN)片段,代表不确定推理的通用类型。本文展示了如何使用成语来构建用于使用数据和知识组合的产品安全和风险评估的因果BN。我们表明,我们引入的特定产品安全习惯足以建立完整的BN模型,以评估各种产品的安全性和风险。即使有限(或没有)产品测试数据,安全调节器和产品制造商也可以使用最终的模型。
translated by 谷歌翻译
我们提出了圆顶,这是一种单发模仿学习的新颖方法,可以从单个演示中学习任务,然后立即部署,而无需任何进一步的数据收集或培训。圆顶不需要事先任务或对象知识,并且可以在新颖的对象配置和干扰器中执行任务。圆顶以图像条件的对象分割网络,然后是一个学习的视觉宣传网络,将机器人的最终效应器移至相同的相对姿势到对象,之后可以通过重播来完成任务,将机器人的最终效果转移到对象上,将机器人的最终效果转移到对象上,以将机器人的最终效果转移到对象上,从而完成了一个相同的相对姿势演示的最终效应速度。我们表明,圆顶在7个现实世界的日常任务上取得了接近100%的成功率,并且我们进行了几项研究,以彻底了解圆顶的每个组成部分。视频和补充材料可在以下网址获得:https://www.robot-learning.uk/dome。
translated by 谷歌翻译
人工智能的神经符号方法将神经网络与经典的象征技术结合起来,正在逐渐突出,需要正式的方法来推理其正确性。我们提出了一种新型的建模形式主义,称为神经符号并发随机游戏(NS-CSGS),该游戏包括在共享的连续状态环境中相互作用的概率有限状态的概率有限状态,通过以神经网络实现的感知机制观察到。由于环境状态空间是连续的,因此我们专注于具有Borel状态空间的NS-CSG类。我们考虑了零和折扣累积奖励的问题,并证明了在Borel可测量性和对模型组件的分段限制下NS-CSG的价值的存在。从算法的角度来看,计算CSG的值和最佳策略的现有方法集中在有限状态空间上。我们首次介绍可实施的价值迭代和政策迭代算法,以求解一类无数状态空间CSG,即NS-CSG,并证明其收敛性。我们的方法通过利用基础游戏结构,然后制定NS-CSG的价值函数和策略的分段线性或恒定表示。我们通过将价值迭代的原型实施应用于动态的停车案例研究来说明我们的方法。
translated by 谷歌翻译
最近的工作表明,自我监督的预训练导致对挑战性视觉识别任务的监督学习改进。剪辑是一种令人兴奋的学习语言监督的新方法,展示了各种基准的有希望的表现。在这项工作中,我们探索自我监督的学习是否可以帮助使用语言监督来进行视觉表现学习。我们介绍了一个用于组合自我监督学习和剪辑预训练的多任务学习框架。在使用视觉变形金刚进行预培训之后,我们在三个不同的设置下彻底评估了代表性质量,并将性能与自我监督学习进行了比较:零拍摄传输,线性分类和端到端的FineTuning。在ImageNet和电池的额外数据集中,我们发现SLIP通过大幅度提高了精度。我们将通过关于不同模型大小,培训计划和预训练预训练数据集的实验进行验证。我们的研究结果表明,滑块享有世界上最好的:性能比自我监督更好(+ 8.1%的线性精度)和语言监督(+ 5.2%的零射精精度)。
translated by 谷歌翻译