GPU编译器是复杂的软件程序,具有许多特定于目标硬件的优化。这些优化通常由使用时间和资源密集型流程的编译器专家手工设计的启发式。在本文中,我们开发了一种GPU编译器自动调节框架,使用禁止策略的深度加强学习来生成提高图形应用程序帧速率的启发式。此外,我们展示了这些学习的启发式的恢复能力,通过分析他们在没有再培训的代码检查中的一年内的稳定性来频繁编译更新。我们表明,我们的机器基于机器的学习编译器自动调节框架匹配或超过98%的图形基准的帧速率,平均隆起为1.6%,高达15.8%。
translated by 谷歌翻译
我们研究了用于线性回归的主动采样算法,该算法仅旨在查询目标向量$ b \ in \ mathbb {r} ^ n $的少量条目,并将近最低限度输出到$ \ min_ {x \ In \ mathbb {r} ^ d} \ | ax-b \ | $,其中$ a \ in \ mathbb {r} ^ {n \ times d} $是一个设计矩阵和$ \ | \ cdot \ | $是一些损失函数。对于$ \ ell_p $ norm回归的任何$ 0 <p <\ idty $,我们提供了一种基于Lewis权重采样的算法,其使用只需$ \ tilde {o}输出$(1+ \ epsilon)$近似解决方案(d ^ {\ max(1,{p / 2})} / \ mathrm {poly}(\ epsilon))$查询到$ b $。我们表明,这一依赖于$ D $是最佳的,直到对数因素。我们的结果解决了陈和Derezi的最近开放问题,陈和Derezi \'{n} Ski,他们为$ \ ell_1 $ norm提供了附近的最佳界限,以及$ p \中的$ \ ell_p $回归的次优界限(1,2) $。我们还提供了$ O的第一个总灵敏度上限(D ^ {\ max \ {1,p / 2 \} \ log ^ 2 n)$以满足最多的$ p $多项式增长。这改善了Tukan,Maalouf和Feldman的最新结果。通过将此与我们的技术组合起来的$ \ ell_p $回归结果,我们获得了一个使$ \ tilde o的活动回归算法(d ^ {1+ \ max \ {1,p / 2 \}} / \ mathrm {poly}。 (\ epsilon))$疑问,回答陈和德里兹的另一个打开问题{n}滑雪。对于Huber损失的重要特殊情况,我们进一步改善了我们对$ \ tilde o的主动样本复杂性的绑定(d ^ {(1+ \ sqrt2)/ 2} / \ epsilon ^ c)$和非活跃$ \ tilde o的样本复杂性(d ^ {4-2 \ sqrt 2} / \ epsilon ^ c)$,由于克拉克森和伍德拉夫而改善了Huber回归的以前的D ^ 4 $。我们的敏感性界限具有进一步的影响,使用灵敏度采样改善了各种先前的结果,包括orlicz规范子空间嵌入和鲁棒子空间近似。最后,我们的主动采样结果为每种$ \ ell_p $ norm提供的第一个Sublinear时间算法。
translated by 谷歌翻译
在临床环境中,通过视频脑电图(EEG)测试监测癫痫患者。视频EEG记录eEG设备记录其脑波时录像带的患者体验。目前,在癫痫发作期间,没有现有的自动化方法用于跟踪患者位置,以及医院患者的视频录制与公开的视频基准数据集大致不同。例如,摄像机角度可能是不寻常的,患者可以部分地覆盖有床上用品和电极组。能够与视频EEG实时跟踪患者将是提高医疗保健质量的有希望的创新。具体而言,自动患者检测系统可以补充临床监督,并降低需要连续监测患者的护士和医生的资源密集努力。我们评估了一个想象的预先训练的面罩R-CNN,一种标准的对象检测深度学习模型,用于使用我们自己的45岁患者45个视频的策划数据集的患者检测任务。数据集被聚合并策划此工作。我们展示没有微调的情况下,Imagenet预训练的掩模R-CNN模型在这些数据上表现不佳。通过微调具有我们数据集的子集的模型,我们观察患者检测性能的大量改善,平均平均精度为0.64。我们表明结果基本上取决于视频剪辑。
translated by 谷歌翻译
尽管辐射学家常规使用电子健康记录(EHR)数据来形成临床历史并通知图像解释,但医学成像的大多数深度学习架构是单向的,即,它们只能从像素级信息中学习特征。最近的研究揭示了如何从像素数据中恢复种族,仅突出显示模型中的严重偏差的可能性,这未能考虑人口统计数据和其他关键患者属性。然而,缺乏捕获临床背景的成像数据集,包括人口统计学和纵向病史,具有偏远的多式化医学成像。为了更好地评估这些挑战,我们呈现RadFusion,一种多式联运,基准数据集1794名患者的相应EHR数据和高分辨率计算断层扫描(CT)扫描标记为肺栓塞。我们评估了几个代表性的多模式融合模型,并在受保护的亚组中,例如性别,种族/种族,年龄的年龄。我们的研究结果表明,集成成像和EHR数据可以提高分类性能和鲁棒性,而不会在人口群之间的真正阳性率下引入大的差异。
translated by 谷歌翻译
人工智能(AI)为简化Covid-19诊断提供了有前景的替代。然而,涉及周围的安全和可信度的担忧阻碍了大规模代表性的医学数据,对临床实践中训练广泛的模型造成了相当大的挑战。为了解决这个问题,我们启动了统一的CT-Covid AI诊断计划(UCADI),其中AI模型可以在没有数据共享的联合学习框架(FL)下在每个主机机构下分发和独立地在没有数据共享的情况下在每个主机机构上执行。在这里,我们认为我们的FL模型通过大的产量(中国测试敏感性/特异性:0.973 / 0.951,英国:0.730 / 0.942),与专业放射科医师的面板实现可比性表现。我们进一步评估了持有的模型(从另外两家医院收集,留出FL)和异构(用造影材料获取)数据,提供了模型所做的决策的视觉解释,并分析了模型之间的权衡联邦培训过程中的性能和沟通成本。我们的研究基于来自位于中国和英国的23家医院的3,336名患者的9,573次胸部计算断层扫描扫描(CTS)。统称,我们的工作提出了利用联邦学习的潜在保留了数字健康的前景。
translated by 谷歌翻译
我们介绍了$(p,q)$ - 公平集群问题。在这个问题中,我们给出了一组点数$ p $和不同重量函数的集合$ w $。我们想找到一个群集,最小化$ \ ell_q $ -norm的$ \ ell_p $-norm的$ \ ell_p $ -norms的$ p $从中心。这概括了各种聚类问题,包括社会博览会$ k $ -Median和$ k $ - emeans,并且与其他问题紧密相连,如Densest $ K $ -subgraph和Min $ K $ -Union。我们利用凸编程技术来估计$(p,q)$ - 为$ p $和$ q $的不同价值观达到公平的聚类问题。当$ p \ geq q $时,我们得到$ o(k ^ {(pq)/(2pq)})$,它几乎匹配$ k ^ {\ omega((pq)/(pq))} $低于基于Min $ K $ -Union和其他问题的猜想硬度的束缚。当$ q \ geq p $时,我们得到一个近似,它与界限$ p,q $的输入的大小无关,也与最近的$ o相匹配((\ log n /(\ log \ log n)) ^ {1 / p})$ - $(p,\ infty)$ - makarychev和vakilian(colt 2021)的公平聚类。
translated by 谷歌翻译
用于神经形态计算的生物学启发的尖峰神经元是具有动态状态变量的非线性滤波器 - 与深度学习中使用的无状态神经元模型非常不同。 Notel Intel的神经形态研究处理器Loihi 2的下一个版本支持各种具有完全可编程动态的最有状态尖峰神经元模型。在这里,我们展示了先进的尖峰神经元模型,可用于有效地处理仿真Loihi 2硬件的仿真实验中的流数据。在一个示例中,共振和火(RF)神经元用于计算短时间傅里叶变换(STFT),其具有类似的计算复杂度,但是输出带宽的47倍而不是传统的STFT。在另一个例子中,我们描述了一种使用时间率RF神经元的光学流量估计算法,其需要比传统的基于DNN的解决方案超过90倍。我们还展示了有前途的初步结果,使用BackPropagation培训RF神经元进行音频分类任务。最后,我们表明,跳跃的血管谐振器 - RF神经元的变体 - 重复耳蜗的新特性,并激励一种有效的基于尖峰的谱图编码器。
translated by 谷歌翻译
现代软件系统和产品越来越依赖机器学习模型,以基于与用户和系统的交互进行数据驱动的决策,例如计算基础架构。对于更广泛的采用,这种做法必须(i)容纳没有ML背景的软件工程师,并提供(ii)提供优化产品目标的机制。在这项工作中,我们描述了一般原则和特定的端到端毫升平台,为决策和反馈集合提供易于使用的API。循环仪支持从在线数据收集到模拟培训,部署,推理的完整端到端ML生命周期,并扩展支持和调整产品目标的评估和调整。我们概述了平台架构和生产部署的整体影响 - 循环仪当前托管700毫升型号,每秒达到600万决定。我们还描述了学习曲线并总结了平台采用者的经验。
translated by 谷歌翻译
评估对抗性鲁棒性的量,以找到有输入样品被错误分类所需的最小扰动。底层优化的固有复杂性需要仔细调整基于梯度的攻击,初始化,并且可能为许多计算苛刻的迭代而被执行,即使专门用于给定的扰动模型也是如此。在这项工作中,我们通过提出使用不同$ \ ell_p $ -norm扰动模型($ p = 0,1,2,\ idty $)的快速最小规范(FMN)攻击来克服这些限制(FMN)攻击选择,不需要对抗性起点,并在很少的轻量级步骤中收敛。它通过迭代地发现在$ \ ell_p $ -norm的最大信心被错误分类的样本进行了尺寸的尺寸$ \ epsilon $的限制,同时适应$ \ epsilon $,以最小化当前样本到决策边界的距离。广泛的实验表明,FMN在收敛速度和计算时间方面显着优于现有的攻击,同时报告可比或甚至更小的扰动尺寸。
translated by 谷歌翻译
目的:为全身CT设计多疾病分类扫描使用自动提取标签从放射科文reports.Materials和方法三个不同的器官系统:这项回顾性研究共有12,092例患者(平均年龄57 + - 18; 6172名妇女)包括对模型开发和测试(2012-2017自)。基于规则的算法被用来从12,092患者提取13667身体CT扫描19,225疾病的标签。使用三维DenseVNet,三个器官系统是分段的:肺和胸膜;肝胆;和肾脏及输尿管。对于每个器官,三维卷积神经网络分类没有明显的疾病与四种常见疾病为跨越所有三个模型总共15个不同的标签。测试是在相对于2875个手动导出的参考标签2158个CT体积的子集从2133名患者( - ; 1079名妇女18,平均年龄58 +)进行。性能报告为曲线(AUC)与通过方法德朗95%置信区间下接收器的操作特性的区域。结果:提取的标签说明书验证确认91%横跨15个不同的唱片公司99%的准确率。对于肺和胸膜标签的AUC分别为:肺不张0.77(95%CI:0.74,0.81),结节0.65(0.61,0.69),肺气肿0.89(0.86,0.92),积液0.97(0.96,0.98),并且没有明显的疾病0.89( 0.87,0.91)。对于肝和胆囊的AUC分别为:肝胆钙化0.62(95%CI:0.56,0.67),病变0.73(0.69,0.77),扩张0.87(0.84,0.90),脂肪0.89(0.86,0.92),并且没有明显的疾病0.82( 0.78,0.85)。对于肾脏及输尿管的AUC分别为:石0.83(95%CI:0.79,0.87),萎缩0.92(0.89,0.94),病变0.68(0.64,0.72),囊肿0.70(0.66,0.73),并且没有明显的疾病0.79(0.75 ,0.83)。结论:弱监督深度学习模型能够在多器官系统不同的疾病分类。
translated by 谷歌翻译