非正交多访问(NOMA)是一项有趣的技术,可以根据未来的5G和6G网络的要求实现大规模连通性。尽管纯线性处理已经在NOMA系统中达到了良好的性能,但在某些情况下,非线性处理是必须的,以确保可接受的性能。在本文中,我们提出了一个神经网络体系结构,该架构结合了线性和非线性处理的优势。在图形处理单元(GPU)上的高效实现证明了其实时检测性能。使用实验室环境中的实际测量值,我们显示了方法比常规方法的优越性。
translated by 谷歌翻译
Adaptive partial linear beamforming meets the need of 5G and future 6G applications for high flexibility and adaptability. Choosing an appropriate tradeoff between conflicting goals opens the recently proposed multiuser (MU) detection method. Due to their high spatial resolution, nonlinear beamforming filters can significantly outperform linear approaches in stationary scenarios with massive connectivity. However, a dramatic decrease in performance can be expected in high mobility scenarios because they are very susceptible to changes in the wireless channel. The robustness of linear filters is required, considering these changes. One way to respond appropriately is to use online machine learning algorithms. The theory of algorithms based on the adaptive projected subgradient method (APSM) is rich, and they promise accurate tracking capabilities in dynamic wireless environments. However, one of the main challenges comes from the real-time implementation of these algorithms, which involve projections on time-varying closed convex sets. While the projection operations are relatively simple, their vast number poses a challenge in ultralow latency (ULL) applications where latency constraints must be satisfied in every radio frame. Taking non-orthogonal multiple access (NOMA) systems as an example, this paper explores the acceleration of APSM-based algorithms through massive parallelization. The result is a GPUaccelerated real-time implementation of an orthogonal frequency-division multiplexing (OFDM)based transceiver that enables detection latency of less than one millisecond and therefore complies with the requirements of 5G and beyond. To meet the stringent physical layer latency requirements, careful co-design of hardware and software is essential, especially in virtualized wireless systems with hardware accelerators.
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译
急诊科(EDS)的表现对于任何医疗保健系统都非常重要,因为它们是许多患者的入口处。但是,除其他因素外,患者敏锐度水平和访问患者的相应治疗要求的变异性对决策者构成了重大挑战。平衡患者的等待时间首先是由医生与所有敏锐度水平的总长度相处的,对于维持所有患者的可接受的操作表现至关重要。为了解决这些要求在为患者分配空闲资源时,过去提出了几种方法,包括累积的优先排队(APQ)方法。 APQ方法在系统和敏锐度水平方面将优先评分线性分配给患者。因此,选择决策基于一个简单的系统表示,该表示作为选择功能的输入。本文研究了基于机器学习(ML)的患者选择方法的潜力。它假设对于大量的培训数据,包括多种不同的系统状态,(接近)最佳分配可以通过(启发式)优化器计算出关于所选的性能指标,并旨在模仿此类最佳行为。应用于新情况。因此,它结合了系统的全面状态表示和复杂的非线性选择函数。拟议方法的动机是,高质量的选择决策可能取决于描述ED当前状态的各种因素,而不仅限于等待时间,而这些因素可以由ML模型捕获和利用。结果表明,所提出的方法显着优于大多数评估设置的APQ方法
translated by 谷歌翻译
我们介绍了CRASS(反事实推理评估)数据集,并利用有问题的反事实条件作为一种新颖而有力的工具来评估大型语言模型。我们介绍数据集设计和基准测试,该设计支持对人群验证的人类基线进行评分。我们针对我们的基准测试了六个最先进的模型。我们的结果表明,它对这些模型构成了有效的挑战,并为它们的改进空间打开了可观的空间。
translated by 谷歌翻译
流体流动在自然和工程学科中是无所不在的。由于多种时空尺度上的非线性相互作用,可靠的流体计算是一种持久的挑战。可压缩的Navier-Stokes方程管理可压缩流动,并允许复杂的现象,如湍流和冲击。尽管硬件和软件具有巨大进展,但捕获流体流量的最小长度仍然引入了现实生活应用的禁止计算成本。我们目前目前目睹了对机器学习支持的数字方案设计的范式转变,作为解决上述问题的手段。虽然事先工作已经探索了用于单位或二维不可压缩的流体流量的可微分算法,但是我们向使用高阶状态的数值方法提供了一种用于计算可压缩流体流动的完全可微分的三维框架。首先,我们通过计算经典的二维和三维测试用例来展示我们的解决者的效率,包括强烈的冲击和过渡到湍流。其次,更重要的是,我们的框架允许结束到最终的优化来改进计算流体动力学算法内的现有数值方案。特别是,我们正在使用神经网络来替代传统的数控函数。
translated by 谷歌翻译
自动化封路计优化(HPO)已经获得了很大的普及,并且是大多数自动化机器学习框架的重要成分。然而,设计HPO算法的过程仍然是一个不系统和手动的过程:确定了现有工作的限制,提出的改进是 - 即使是专家知识的指导 - 仍然是一定任意的。这很少允许对哪些算法分量的驾驶性能进行全面了解,并且承载忽略良好算法设计选择的风险。我们提出了一个原理的方法来实现应用于多倍性HPO(MF-HPO)的自动基准驱动算法设计的原则方法:首先,我们正式化包括的MF-HPO候选的丰富空间,但不限于普通的HPO算法,然后呈现可配置的框架覆盖此空间。要自动和系统地查找最佳候选者,我们遵循通过优化方法,并通过贝叶斯优化搜索算法候选的空间。我们挑战是否必须通过执行消融分析来挑战所发现的设计选择或可以通过更加天真和更简单的设计。我们观察到使用相对简单的配置,在某些方式中比建立的方法更简单,只要某些关键配置参数具有正确的值,就可以很好地执行得很好。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
尽管当前的视觉算法在许多具有挑战性的任务上都表现出色,但尚不清楚他们如何理解现实世界环境的物理动态。在这里,我们介绍了Physion,一种数据集和基准,用于严格评估预测物理场景如何随着时间而发展的能力。我们的数据集具有对各种物理现象的现实模拟,包括刚性和软体体碰撞,稳定的多对象配置,滚动,滑动和弹丸运动,因此比以前的基准提供了更全面的挑战。我们使用Physion来基准一套模型,其体系结构,学习目标,投入输出结构和培训数据各不相同。同时,我们在同一场景上获得了人类预测行为的精确测量,从而使我们能够直接评估任何模型能够近似人类行为的效果。我们发现,学习以对象为中心的表示的视觉算法通常优于那些没有人的表现,但仍未达到人类绩效。另一方面,绘制具有直接访问物理状态信息的神经网络的表现效果更好,并且做出与人类制作的预测更相似。这些结果表明,提取场景的物理表征是在视力算法中实现人类水平和类似人类的物理理解的主要瓶颈。我们已公开发布了所有数据和代码,以促进使用物理以完全可重现的方式对其他模型进行基准测试,从而使对视觉算法的进度进行系统的评估,这些算法像人们一样坚固地了解物理环境。
translated by 谷歌翻译
基于深度学习的分子建模的最新进步令人兴奋地加速硅药发现。可获得血清的生成模型,构建原子原子和键合或逐片键的分子。然而,许多药物发现项目需要固定的支架以存在于所生成的分子中,并纳入该约束仅探讨了该约束。在这里,我们提出了一种基于图形的模型,其自然地支持支架作为生成过程的初始种子,这是可能的,因为它不调节在发电历史上。我们的实验表明,Moler与最先进的方法进行了相当的方法,在无约会的分子优化任务上,并且在基于脚手架的任务上优于它们,而不是比现有方法从培训和样本更快的数量级。此外,我们展示了许多看似小设计选择对整体性能的影响。
translated by 谷歌翻译