移动网络第五代(5G)的能源消耗是电信行业的主要关注点之一。但是,目前没有一种评估5G基站(BSS)功耗的准确且可进行的方法。在本文中,我们提出了一个新颖的模型,以实现5G多载波BSS功耗的现实表征,该模型以大型数据收集活动为基础。首先,我们定义了允许对多个5G BS产品进行建模的机器学习体系结构。然后,我们利用该框架收集的知识来得出一个现实且可分析的功耗模型,这可以帮助推动理论分析以及功能标准化,开发和优化框架。值得注意的是,我们证明了这种模型具有很高的精度,并且能够捕获节能机制的好处。我们认为,该分析模型是理解5G BSS功耗的基本工具,并准确地优化了网络能源效率。
translated by 谷歌翻译
Just like in humans vision plays a fundamental role in guiding adaptive locomotion, when designing the control strategy for a walking assistive technology, Computer Vision may bring substantial improvements when performing an environment-based assistance modulation. In this work, we developed a hip exosuit controller able to distinguish among three different walking terrains through the use of an RGB camera and to adapt the assistance accordingly. The system was tested with seven healthy participants walking throughout an overground path comprising of staircases and level ground. Subjects performed the task with the exosuit disabled (Exo Off), constant assistance profile (Vision Off ), and with assistance modulation (Vision On). Our results showed that the controller was able to promptly classify in real-time the path in front of the user with an overall accuracy per class above the 85%, and to perform assistance modulation accordingly. Evaluation related to the effects on the user showed that Vision On was able to outperform the other two conditions: we obtained significantly higher metabolic savings than Exo Off, with a peak of about -20% when climbing up the staircase and about -16% in the overall path, and than Vision Off when ascending or descending stairs. Such advancements in the field may yield to a step forward for the exploitation of lightweight walking assistive technologies in real-life scenarios.
translated by 谷歌翻译
We consider the problem of predictive monitoring (PM), i.e., predicting at runtime the satisfaction of a desired property from the current system's state. Due to its relevance for runtime safety assurance and online control, PM methods need to be efficient to enable timely interventions against predicted violations, while providing correctness guarantees. We introduce \textit{quantitative predictive monitoring (QPM)}, the first PM method to support stochastic processes and rich specifications given in Signal Temporal Logic (STL). Unlike most of the existing PM techniques that predict whether or not some property $\phi$ is satisfied, QPM provides a quantitative measure of satisfaction by predicting the quantitative (aka robust) STL semantics of $\phi$. QPM derives prediction intervals that are highly efficient to compute and with probabilistic guarantees, in that the intervals cover with arbitrary probability the STL robustness values relative to the stochastic evolution of the system. To do so, we take a machine-learning approach and leverage recent advances in conformal inference for quantile regression, thereby avoiding expensive Monte-Carlo simulations at runtime to estimate the intervals. We also show how our monitors can be combined in a compositional manner to handle composite formulas, without retraining the predictors nor sacrificing the guarantees. We demonstrate the effectiveness and scalability of QPM over a benchmark of four discrete-time stochastic processes with varying degrees of complexity.
translated by 谷歌翻译
大脑区域之间的功能连通性(FC)通常是通过应用于功能磁共振成像(FMRI)数据的统计依赖度量来估计的。所得的功能连接矩阵(FCM)通常用于表示脑图的邻接矩阵。最近,图形神经网络(GNN)已成功应用于FCM,以学习脑图表示。但是,现有GNN方法的一个普遍局限性是,它们要求在模型训练之前知道图形邻接矩阵。因此,隐含地假设数据的基础依赖性结构已知。不幸的是,对于fMRI而言,情况并非如此,因为哪种统计度量的选择最能代表数据的依赖性结构是非平凡的。同样,大多数GNN应用于功能磁共振成像,FC都会随着时间的推移而静态,这与神经科学的证据相反,表明功能性脑网络是随时间变化且动态的。这些复合问题可能会对GNN学习脑图表示的能力产生不利影响。作为解决方案,我们提出了动态大脑图结构学习(DBGSL),这是一种学习fMRI数据最佳时变依赖性结构的监督方法。具体而言,DBGSL通过应用于大脑区域嵌入的时空注意力从fMRI时间表中学习了动态图。然后将所得的图馈送到空间GNN中,以学习分类的图表。大型休息状态以及性别分类任务的fMRI数据集的实验表明,DBGSL可以实现最新的性能。此外,对学习动态图的分析突出了与现有神经科学文献的发现相符的预测相关大脑区域。
translated by 谷歌翻译
自动算法提出的信任预测的意愿是许多领域中的关键。但是,大量的深度体系结构只能在没有相关不确定性的情况下制定预测。在本文中,我们提出了一种将标准神经网络转换为贝叶斯神经网络的方法,并通过对每个正向通行证时类似于原始网络的不同网络进行采样来估算预测的可变性。我们将方法与基于可调拒绝的方法相结合,该方法仅采用数据集的部分,该数据集的分数能够以低于用户集阈值的不确定性进行分类。我们在阿尔茨海默氏病患者的大量大脑图像中测试了我们的模型,在那里我们仅根据形态计量学图像来解决与健康对照组的歧视。我们证明了将估计的不确定性与基于拒绝的方法结合在一起如何将分类精度从0.86提高到0.95,同时保留了75%的测试集。此外,该模型可以根据过度不确定性选择建议进行手动评估的案例。我们认为,能够估计预测的不确定性,以及可以调节网络行为的工具,以使用户被告知(和舒适)可以代表用户方向的关键步骤合规性和更容易将深度学习工具集成到人类运营商当前执行的日常任务中。
translated by 谷歌翻译
在医学中,精心策划的图像数据集经常采用离散标签来描述所谓的健康状况与病理状况的连续光谱,例如阿尔茨海默氏病连续体或图像在诊断中起关键点的其他领域。我们提出了一个基于条件变异自动编码器的图像分层的体系结构。我们的框架VAESIM利用连续的潜在空间来表示疾病的连续体并在训练过程中找到簇,然后可以将其用于图像/患者分层。该方法的核心学习一组原型向量,每个向量与群集关联。首先,我们将每个数据样本的软分配给群集。然后,我们根据样品嵌入和簇的原型向量之间的相似性度量重建样品。为了更新原型嵌入,我们使用批处理大小中实际原型和样品之间最相似表示的指数移动平均值。我们在MNIST手写数字数据集和名为Pneumoniamnist的医疗基准数据集上测试了我们的方法。我们证明,我们的方法在两个数据集中针对标准VAE的分类任务(性能提高了15%)的KNN准确性优于基准,并且还以完全监督的方式培训的分类模型同等。我们还展示了我们的模型如何优于无监督分层的当前,端到端模型。
translated by 谷歌翻译
与临床上建立的疾病类别相比,缺乏大型标记的医学成像数据集以及个体间的显着可变性,在精确医学范式中利用医学成像信息方面面临重大挑战个体预测和/或将患者分为较细粒的群体,这些群体可能遵循更多均匀的轨迹,从而赋予临床试验能力。为了有效地探索以无监督的方式探索医学图像中有效的自由度可变性,在这项工作中,我们提出了一个无监督的自动编码器框架,并增加了对比度损失,以鼓励潜在空间中的高可分离性。该模型在(医学)基准数据集上进行了验证。由于群集标签是根据集群分配分配给每个示例的,因此我们将性能与监督的转移学习基线进行比较。我们的方法达到了与监督体系结构相似的性能,表明潜在空间中的分离再现了专家医学观察者分配的标签。所提出的方法可能对患者分层有益,探索较大类或病理连续性的新细分,或者由于其在变化环境中的采样能力,因此医学图像处理中的数据增强。
translated by 谷歌翻译
系统生物学和系统尤其是神经生理学,最近已成为生物医学科学中许多关键应用的强大工具。然而,这样的模型通常基于需要临时计算策略并提出极高计算需求的多尺度(可能是多物理)策略的复杂组合。深度神经网络领域的最新发展证明了与传统模型相比,具有非线性,通用近似值的可能性,以估算具有高速度和准确性优势的高度非线性和复杂问题。合成数据验证后,我们使用所谓的物理约束神经网络(PINN)同时求解生物学上合理的Hodgkin-Huxley模型,并从可变和恒定电流刺激下从真实数据中推断出其参数和隐藏的时间巡回赛,显示出极低的刺激峰值和忠实信号重建的可变性。我们获得的参数范围也与先验知识兼容。我们证明可以向神经网络提供详细的生物学知识,从而使其能够在模拟和真实数据上拟合复杂的动态。
translated by 谷歌翻译
在最初出生在太空行业的基于时间轴的计划方法中,一组状态变量(时间表)的演变受一组时间约束的控制。基于传统时间表的计划系统在整合计划与处理时间不确定性的执行方面表现出色。为了处理一般的非确定主义,最近引入了基于时间轴的游戏的概念。已经证明,发现此类游戏是否存在获胜策略是2Exptime-Complete。但是,缺少合成实施此类策略的控制器的具体方法。本文填补了这一空白,概述了基于时间轴游戏的控制器合成方法。
translated by 谷歌翻译
我们研究在线学习问题,决策者必须采取一系列决策,但要受到$ M $长期约束。决策者的目标是最大程度地提高其总奖励,同时达到小累积约束,在$ t $回合中违规。我们介绍了此一般类问题的第一个最佳世界类型算法,在根据未知随机模型选择奖励和约束的情况下,无需保证,在它们的情况下,在他们的情况下选择了奖励和约束。在每个回合中由对手选择。我们的算法是关于满足长期约束的最佳固定策略的第一个在对抗环境中提供保证的算法。特别是,它保证了$ \ rho/(1+ \ rho)$的最佳奖励和额定性遗憾,其中$ \ rho $是与严格可行的解决方案有关的可行性参数。我们的框架采用传统的遗憾最小化器作为黑盒组件。因此,通过使用适当的遗憾最小化器进行实例化,它可以处理全反馈以及强盗反馈设置。此外,它允许决策者通过非凸奖励和约束无缝处理场景。我们展示了如何在重复拍卖的预算管理机制的背景下应用我们的框架,以保证不包装的长期约束(例如,ROI约束)。
translated by 谷歌翻译