我们最近提出了一个以DBM为中心的新群集操作系统堆栈DBO。DBO通过将ML代码封装在存储过程中,集中辅助ML数据,为基础DBMS内置的安全性,共同关注ML代码和数据以及跟踪数据和工作流源来源,从而为ML应用程序提供了独特的支持。在这里,我们在两个ML应用程序附近演示了这些好处的子集。我们首先表明,使用GPU的图像分类和对象检测模型可以用作DBOS存储程序,具有与现有系统竞争性能的DBOS存储程序。然后,我们提出了一项1D CNN,训练有素,可以在DBOS支持的Web服务上检测HTTP请求中的异常情况,从而实现SOTA结果。我们使用此模型来开发交互式异常检测系统,并通过定性用户反馈对其进行评估,并证明了其有用性作为未来工作的概念证明,以在DBO上开发实时的实时安全服务。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
人工智能尚未彻底改变材料和分子的设计。在这种观点中,我们确定了四个障碍,阻碍了原子深度学习,分子科学和高性能计算的整合。我们概述了重点的研究努力,解决这些挑战所提供的机会。
translated by 谷歌翻译
分子和材料科学的深度学习受应用科学,人工智能和高性能计算之间缺乏融合的限制。关于培训数据量,模型架构的规模和复杂程度以及计算基础设施的规模的瓶颈是限制分子和材料深度学习缩放的关键因素。在这里,我们呈现$ \ texit {litmatter} $,轻量级框架用于缩放分子深度学习方法。我们在超过400个GPU上培训四个图形神经网络架构,并调查这些方法的缩放行为。根据模型架构,可以看到高达60美元的培训时间加速。经验神经缩放关系量化模型依赖性缩放,使能最优计算资源分配和可伸缩分子几何深度学习模型实现的识别。
translated by 谷歌翻译
提出了一种能够改变形状中空飞行的新型Quadcopter,允许在四种配置中进行操作,其中包含持续的悬停在三个配置中。这是实现的,而不需要超出Quadcopter典型的四个电动机的执行器。通过自由旋转铰链来实现变形,使车臂通过减少或逆转推力向下折叠。放置在车辆的控制输入上的约束防止臂意外折叠或展开。这允许使用现有的四转器控制器和轨迹生成算法,只有最小的增加的复杂性。对于我们在悬停的实验载体中,我们发现这些约束导致车辆可以产生的最大偏航扭矩的36%减少,但不会导致最大推力或卷和螺距扭矩的减少。实验结果表明,对于典型的操纵,增加的限制对轨迹跟踪性能的影响忽略不计。最后,示出了改变配置的能力,使车辆能够在悬挂导线上移动小通道,并且执行有限的抓取任务。
translated by 谷歌翻译
医学图像分割模型的性能指标用于衡量参考注释和预测之间的一致性。在开发此类模型中,使用了一组通用指标,以使结果更具可比性。但是,公共数据集中的分布与临床实践中遇到的案例之间存在不匹配。许多常见的指标无法衡量这种不匹配的影响,尤其是对于包含不确定,小或空参考注释的临床数据集。因此,可能无法通过此类指标来验证模型在临床上有意义的一致性。评估临床价值的维度包括独立于参考注释量的大小,考虑参考注释的不确定性,体积计和/或位置一致性的奖励以及对空参考注释正确分类的奖励。与普通的公共数据集不同,我们的内部数据集更具代表性。它包含不确定的,小或空的参考注释。我们研究了有关深度学习框架的预测的公开度量指标,以确定哪些设置共同指标可提供有意义的结果。我们将公共基准数据集进行比较而没有不确定,小或空参考注释。该代码将发布。
translated by 谷歌翻译
作为一个简单且强大的移动机器人基础,可以将差速器驱动器机器人建模为运动学独轮车,在工业和国内环境中找到了物流和服务机器人技术的重要应用。安全的机器人在障碍物周围导航是这样的独轮车机器人在复杂的混乱环境中执行各种有用任务的重要技能,尤其是在人和其他机器人周围。在本文中,作为标准圆形Lyapunov级集的更准确的替代方法,我们介绍了新型的锥形反馈运动预测方法,用于在标准的Unicycle运动控制方法下界定运动学Unicycle机器人机器人模型的近环运动轨迹。我们介绍了使用参考调速器的安全机器人导航的Unicycle反馈运动预测的应用,在该机器人的安全下,根据预测的机器人运动,不断监视独轮车运动的安全性。我们研究了运动预测对机器人行为在数值模拟中的作用,并得出结论,准确的反馈运动预测是安全和快速机器人导航的关键。
translated by 谷歌翻译
我们提供了证据表明,学到的密度功能理论(``dft')的力场已准备好进行基态催化剂发现。我们的关键发现是,尽管预测的力与地面真相有很大差异,但使用从超过50 \%的评估系统中使用RPBE功能的能量与使用RPBE功能相似或较低能量的力量的力量与使用RPBE功能相似或较低的力量放松。这具有令人惊讶的含义,即学习的潜力可能已经准备好在挑战性的催化系统中替换DFT,例如在Open Catalyst 2020数据集中发现的电位。此外,我们表明,在局部谐波能量表面上具有与目标DFT能量相同的局部谐波能量表面训练的力场也能够在50 \%的情况下找到较低或相似的能量结构。与在真实能量和力量训练的标准模型相比,这种``简易电位''的收敛步骤更少,这进一步加速了计算。它的成功说明了一个关键:即使模型具有高力误差,学到的电位也可以定位能量最小值。结构优化的主要要求仅仅是学到的电位具有正确的最小值。由于学到的电位与系统大小的速度快速且尺寸为线性,因此我们的结果开辟了快速找到大型系统基础状态的可能性。
translated by 谷歌翻译
我们引入了一种新的文化学习范式,以测量在推理过程中学习新颖单词的大型语言模型(LLMS)。特别是,我们通过用一个合成但合理的词代替关键概念词来重写Winograd风格的共同参考分辨率问题,该词必须理解该模型以完成任务。解决此任务需要模型来利用提示中给出的新单词的字典定义。这个基准介绍了单词获取,这是折磨llms已知的历时降解的一个重要方面。由于LLM在训练的那一刻及时被冻结,因此通常无法反映语言随着时间的变化方式。我们表明,与原始Winograd任务相比,LLM的准确性在我们的基准测试中从根本上降低,从而确定了当前模型的局限性,并提供了基准来衡量LLMS的未来改善LLMS进行内在学习的能力。
translated by 谷歌翻译
三维荧光显微镜通常遭受各向异性的影响,沿轴向方向的分辨率低于侧面成像平面内的分辨率。我们通过提出双周期来解决此问题,这是双环荧光图像的关节反卷积和融合的新框架。受到最近的神经清性方法的启发,双周期被设计为一种循环一致的生成网络,通过结合双视发电机和先前引导的退化模型,以自我监督的方式训练。我们在合成数据和真实数据上验证双周期,显示其最先进的性能,而无需任何外部培训数据。
translated by 谷歌翻译