随着全球气候变化影响影响世界的影响,需要集体努力来减少温室气体排放。能源部门是气候变化的最大贡献者,许多努力集中在减少对碳源发电厂的依赖,并转向可再生能源,如太阳能。太阳能电池板位置的全面数据库对于协助分析师和政策制定者来说,在定义太阳能的进一步扩展方面的策略方面很重要。在本文中,我们专注于创建太阳能电池板的世界地图。我们识别给定地理区域内的太阳能电池板的位置和总表面积。我们使用深度学习方法来使用空中图像自动检测太阳能电池板位置及其表面积。该框架由使用具有语义分割模型的串联串联使用图像分类器的双分支模型组成的框架在我们创建的卫星图像的日数据集上培训。我们的作品提供了一种用于检测太阳能电池板的高效和可扩展的方法,实现分类的精度为0.96,并且对于分割性能,IOU分数为0.82。
translated by 谷歌翻译
深度学习与高分辨率的触觉传感相结合可能导致高度强大的灵巧机器人。但是,由于专业设备和专业知识,进度很慢。数字触觉传感器可使用Gelsight型传感器提供低成本的高分辨率触摸。在这里,我们将数字定制为基于柔软仿生光学触觉传感器的Tactip家族具有3D打印的传感表面。 Digit-Tactip(Digitac)可以在这些不同的触觉传感器类型之间进行直接比较。为了进行此比较,我们引入了一个触觉机器人系统,该机器人系统包括桌面臂,坐骑和3D打印的测试对象。我们将触觉伺服器控制与Posenet深度学习模型一起比较数字,Digitac和Tactip,以在3D形状上进行边缘和表面跟随。这三个传感器在姿势预测上的性能类似,但是它们的构造导致伺服控制的性能不同,为研究人员选择或创新触觉传感器提供了指导。复制此研究的所有硬件和软件将公开发布。
translated by 谷歌翻译
本文介绍了BRL/PISA/IIT(BPI)SOFTHAND:单个执行器驱动的,低成本,3D打印,肌腱驱动的机器人手,可用于执行一系列掌握任务。基于PISA/IIT SOFTHAND的自适应协同作用,我们设计了一种新的关节系统和肌腱路由,以促进软化和适应性的协同作用,这有助于我们平衡手的耐用性,负担能力和握住手的性能。这项工作的重点在于该杂种的设计,仿真,协同作用和抓握测试。新颖的小块是根据连锁,齿轮对和几何约束机制设计和印刷的,可以应用于大多数肌腱驱动的机器人手。我们表明,机器人手可以成功地掌握和提起各种目标对象并适应复杂的几何形状,从而反映了软化和适应性协同的成功采用。我们打算为手的设计开放源,以便可以在家用3D打印机上廉价地构建。有关更多详细信息:https://sites.google.com/view/bpi-softhandtactile-group-bri/brlpisaiit-softhand-design
translated by 谷歌翻译
我们研究了通过功能近似的强化学习,以部分可观察到的马尔可夫决策过程(POMDP),其中状态空间和观察空间很大甚至连续。特别是,我们考虑了POMDP的Hilbert空间嵌入,其中潜在状态的特征和观察的特征允许观测发射过程的有条件的希尔伯特空间嵌入,而潜在状态过渡是确定性的。在函数近似设置下,最佳潜在状态行动$ q $函数在状态功能中是线性的,而最佳$ q $ - 功能具有差距,我们提供了\ emph {计算和统计上有效} algorithm查找\ emph {确切的最佳}策略。我们在观察空间上的算法和特征的固有维度上,在多项式上显示了算法的计算和统计复杂性。此外,我们显示了确定性的潜在过渡和差距假设对于避免统计复杂性指数在地平线或维度中是必要的。由于我们的保证对状态和观察空间的大小没有明确的依赖性,因此我们的算法可证明对大规模POMDPS。
translated by 谷歌翻译
我们研究使用功能近似的部分可观察到的动力学系统的增强学习。我们提出了一个新的\ textit {部分可观察到的双线性actor-Critic-Critic框架},它足以包括可观察到的图表部分可观察到的Markov决策过程(POMDPS),可观察到的线性Quadratic-Quadratic-Gaussian(LQG)(LQG),预测状态表示(POMDPS)( PSRS),以及新引入的模型Hilbert空间嵌入POMDPS和可观察到的POMDP,具有潜在的低级过渡。在此框架下,我们提出了一种能够执行不可知论政策学习的参与者批评算法。给定一个由基于内存的策略组成的策略类别(查看最近观察的固定长度窗口),以及一个值得将内存和未来观察作为输入的功能组成的值函数类别,我们的算法学会了与最佳的最佳竞争在给定策略类中基于内存的策略。对于某些示例,例如可观察到的表格pomdps,可观察到的LQG和可观察到的具有潜在低级过渡的可观察到的POMDP,通过隐式利用其特殊特性,我们的算法甚至能够与全球最佳策略竞争,而无需支付对高度依赖的依赖,以竞争全球最佳的策略。它的样本复杂性。
translated by 谷歌翻译
随着大型语言模型的出现,抽象性摘要的方法取得了长足的进步,从而在应用程序中使用了帮助知识工人处理笨拙的文档收集的潜力。一个这样的环境是民权诉讼交换所(CRLC)(https://clearinghouse.net),其中发布了有关大规模民权诉讼,服务律师,学者和公众的信息。如今,CRLC中的摘要需要对律师和法律专业的学生进行广泛的培训,这些律师和法律专业的学生花费数小时了解多个相关文件,以便产生重要事件和结果的高质量摘要。在这种持续的现实世界摘要工作的激励下,我们引入了Multi-iplesum,这是由正在进行的CRLC写作中绘制的9,280个专家作者的摘要集。鉴于源文档的长度,多文章介绍了一个具有挑战性的多文档摘要任务,通常每个情况超过200页。此外,多胎sum与其多个目标摘要中的其他数据集不同,每个数据集都处于不同的粒度(从一句“极端”摘要到超过五百个单词的多段落叙述)。我们提供了广泛的分析,表明,尽管培训数据(遵守严格的内容和样式准则)中的摘要很高,但最新的摘要模型在此任务上的表现较差。我们发布了多体式的摘要方法,以及促进应用程序的开发,以协助CRLC的任务https://multilexsum.github.io。
translated by 谷歌翻译
我们介绍了\ textit {nocturne},这是一种新的2D驾驶模拟器,用于调查部分可观察性下的多代理协调。夜曲的重点是在不具有计算机视觉的计算开销并从图像中提取特征的情况下,在现实世界中的推理和心理理论方面进行研究。该模拟器中的代理只会观察到场景的障碍,模仿人类的视觉传感限制。 Unlike existing benchmarks that are bottlenecked by rendering human-like observations directly using a camera input, Nocturne uses efficient intersection methods to compute a vectorized set of visible features in a C++ back-end, allowing the simulator to run at $2000+$ steps-per -第二。使用开源轨迹和映射数据,我们构建了一个模拟器,以加载和重播来自现实世界驾驶数据的任意轨迹和场景。使用这种环境,我们基准了加强学习和模仿学习剂,并证明这些代理远离人类水平的协调能力,并显着偏离专家轨迹。
translated by 谷歌翻译
避免碰撞需要在计划时间范围内进行权衡。根据规划师的不同,在给定地图更新的情况下,不能总是在不确定的环境中保证安全性。为了减轻策划者将车辆带到碰撞状态或车辆到达不可行的点的情况,我们提出了连续的碰撞检查算法。迫在眉睫的碰撞检查系统不断监视车辆的安全性,并计划了一个安全的轨迹,该轨迹将车辆带到观察到的地图内停止。我们在现实生活实验中以及模拟的随机堡垒和仓库环境中测试了我们提出的管道,并在现实生活实验中测试了我们的管道,我们证明,通过我们的方法,我们能够以至少90 \%的成功率来减轻碰撞。
translated by 谷歌翻译
为了帮助开发用于光谱数据自动分类的机器学习方法,我们生成了一个通用的合成数据集,可用于模型验证。该数据集包含人工光谱,旨在表示来自X射线衍射,核磁共振和拉曼光谱的技术的实验测量。数据集生成过程具有可自定义的参数,例如扫描长度和峰值计​​数,可以调整这些参数以适应手头的问题。作为初始基准,我们模拟了一个基于500个独特类的数据集,该数据集包含35,000个光谱。为了自动化此数据的分类,评估了八个不同的机器学习体系结构。从结果来看,我们阐明了哪些因素对于在分类任务中实现最佳性能至关重要。用于生成合成光谱的脚本以及我们的基准数据集和评估程序,可公开使用,以帮助开发改进的机器学习模型以进行光谱分析。
translated by 谷歌翻译
为了实现机器人操作中影响的剥削,提出了一个新框架,以控制机器人操纵器,该机器人操纵器的任务是名义上同时执行的影响。在此框架中,我们采用了对应于前后运动和影响后运动的时间不变的参考矢量场的跟踪,从而在相似的常规跟踪控制方法上增加了其适用性。前后的引用和后影响引用是通过刚性冲击图耦合的,并扩展到预期发生冲击的区域重叠,以便始终遵循与机器人实际接触状态相对应的参考。由于通常会发生在不同接触点处的一系列冲击,从而导致接触模式和不可靠的速度测量值的不确定性,因此制定了针对时间不变参考的新的临时控制模式。在此模式下,位置反馈信号来自静电速度参考,该参考用于在所有接触点中强制执行持续的接触,而无需使用速度反馈。为了注重实际实现,该方法是使用QP控制框架制定的,并使用具有硬弹性接触模型的刚性机器人和具有柔性关节和合规性弹性触点模型的逼真的机器人模型上的数值模拟进行了验证。
translated by 谷歌翻译