仿真最近已成为深度加强学习,以安全有效地从视觉和预防性投入获取一般和复杂的控制政策的关键。尽管它与环境互动直接关系,但通常认为触觉信息通常不会被认为。在这项工作中,我们展示了一套针对触觉机器人和加强学习量身定制的模拟环境。提供了一种简单且快速的模拟光学触觉传感器的方法,其中高分辨率接触几何形状表示为深度图像。近端策略优化(PPO)用于学习所有考虑任务的成功策略。数据驱动方法能够将实际触觉传感器的当前状态转换为对应的模拟深度图像。此策略在物理机器人上实时控制循环中实现,以演示零拍摄的SIM-TO-REAL策略转移,以触摸感的几个物理交互式任务。
translated by 谷歌翻译
宇宙学调查实验中的数据处理和分析管道引入了数据扰动,可以显着降低基于深度学习的模型的性能。鉴于加工和分析宇宙学调查数据的监督深度学习方法的增加,数据扰动效应的评估以及增加模型稳健性的方法的发展越来越重要。在星系形态分类的背景下,我们研究了扰动在成像数据中的影响。特别是,我们在基线数据培训和扰动数据测试时检查使用神经网络的后果。我们考虑与两个主要来源相关的扰动:1)通过泊松噪声和2)诸如图像压缩或望远镜误差的图像压缩或望远粉误差所产生的步骤所产生的数据处理噪声提高了观测噪声。我们还测试了域适应技术在减轻扰动驱动误差时的功效。我们使用分类准确性,潜在空间可视化和潜在空间距离来评估模型稳健性。如果没有域适应,我们发现处理像素级别错误容易将分类翻转成一个不正确的类,并且更高的观察噪声使得模型在低噪声数据上培训无法对Galaxy形态进行分类。另一方面,我们表明,具有域适应的培训改善了模型稳健性并减轻了这些扰动的影响,以更高的观测噪声的数据提高了23%的分类精度。域适应也增加了基线与错误分类的错误分类的潜在空间距离〜2.3的倍数距离,使模型更强大地扰动。
translated by 谷歌翻译
近年来,近期量子机器学习的研究已经探索了归一机学习算法如何获得Quantum核(相似度措施)的访问能够优于其纯粹的经典对应物。虽然理论上的工作已经在合成数据集上显示了可提供的优势,但没有对迄今为止的工作证明估计量子优势是可实现的,并且具有什么样的数据集。在本文中,我们报告了医疗保健和生命科学的经验量子优势(EQA)的首次系统调查,并提出了一个学习EQA的端到端框架。我们选择了电子健康记录(EHRS)数据子集,并创建了5-20个功能的配置空间和200-300个培训样本。对于每个配置坐标,我们使用IBM量子计算机训练基于径向基函数(RBF)内核和Quantum型号的径向基函数(RBF)内核和量子型号进行培训。我们经验鉴定了Quantum核可以在特定数据集中提供优势的制度,并且引入了地形坚固耐性索引,以帮助定量地估计给定模型的准确度作为特征数和样本大小的函数来执行的指标。这里介绍的概括框架代表了朝向可以存在量子优势的数据集的先验识别的关键步骤。
translated by 谷歌翻译
数据驱动模型发现中的中央挑战是存在隐藏或潜伏的变量,这些变量不会直接测量,而是动态重要。 TAKENS的定理提供了在可能随时间延迟信息中增加这些部分测量的条件,导致吸引物,这是对原始全状态系统的扩散逻辑。然而,回到原始吸引子的坐标变换通常是未知的,并且学习嵌入空间中的动态仍然是几十年的开放挑战。在这里,我们设计自定义深度AutoEncoder网络,以学习从延迟嵌入空间的坐标转换到一个新的空间,其中可以以稀疏,封闭的形式表示动态。我们在Lorenz,R \“Ossler和Lotka-Volterra系统上,从单个测量变量的学习动态展示了这种方法。作为一个具有挑战性的例子,我们从混乱的水车视频中提取的单个标量变量中学到一个洛伦兹类似物得到的建模框架结合了深入的学习来揭示可解释建模的非线性动力学(SINDY)的揭示有效坐标和稀疏识别。因此,我们表明可以同时学习闭合模型和部分的坐标系观察到的动态。
translated by 谷歌翻译
AI / Compling在Scale是一个难题,特别是在医疗保健环境中。我们概述了要求,规划和实施选择,以及导致我们安全的研究计算平台,埃森医疗计算平台(EMCP)的实施的指导原则,与德国主要医院隶属。遵从性,数据隐私和可用性是系统的不可变的要求。我们将讨论我们的计算飞地的功能,我们将为希望采用类似设置的团体提供我们的配方。
translated by 谷歌翻译
这项工作系统地调查了深度图像去噪者(DIDS)的对抗性稳健性,即,可以从嘈杂的观察中恢复地面真理的噪音,因对抗性扰动而变化。首先,为了评估DIDS的稳健性,我们提出了一种新的逆势攻击,即观察到的零平均攻击({\ SC obsatk}),对给定嘈杂的图像来制作对抗零均匀扰动。我们发现现有的确实容易受到{\ SC Obsatk}产生的对抗噪声。其次,为了强化犯罪,我们提出了一种对抗性培训策略,混合对抗训练({\ SC帽}),共同列车与对抗性和非对抗性嘈杂的数据做出,以确保重建质量很高,并且围绕非对抗性数据是局部光滑的。所得到的确实可以有效去除各种类型的合成和对抗性噪声。我们还发现,DIDS的稳健性使其在看不见的真实噪音上的概括能力。实际上,{\ SC帽子} -Tromed DID可以从真实世界的噪音中恢复高质量的清洁图像,即使没有真正的嘈杂数据训练。基准数据集的广泛实验,包括SET68,PolyU和SIDD,证实了{\ SC Obsatk}和{\ SC帽}的有效性。
translated by 谷歌翻译
在过去几年中,神经字符动画已经出现并提供了一种动画虚拟字符的自动方法。它们的运动由神经网络合成。用用户定义的控制信号实时控制该运动也是视频游戏中的重要任务。基于全连接层(MLP)和专家混合物(MOE)的解决方案已经令人印象深刻的导致产生和控制环境与虚拟字符之间的近距离相互作用的各种运动。然而,完全连接层的主要缺点是它们的计算和内存成本,可能导致子优化的解决方案。在这项工作中,我们在交互式角色动画的背景下应用修剪算法以压缩MLP-Moe神经网络,这降低了其参数的数量,并在该加速度和合成的运动质量之间进行权衡加速其计算时间。这项工作表明,通过相同数量的专家和参数,修剪模型产生的运动伪像比密集模型更少,并且学习的高级运动功能对于两者相似
translated by 谷歌翻译
图像质量是一个模糊的概念,对不同的人不同的含义。为了量化图像质量,通常在损坏的图像和地面真实图像之间计算相对差异。但是我们应该使用哪些指标来测量这种差异?理想情况下,公制应对自然和科学图像表现良好。结构相似度指数(SSIM)是人类如何感知图像相似性的好措施,但对显微镜中科学有意义的差异不敏感。在电子和超分辨率显微镜中,经常使用傅里叶环相关(FRC),但在这些领域之外几乎是知名的。在这里,我们表明FRC同样可以应用于自然图像,例如自然图像。 Google打开图像数据集。然后,我们基于FRC定义了损失功能,表明它是在分析上可分的,并使用它来训练U-Net以用于去噪图像。这种基于FRC的损耗功能允许网络训练更快并达到与使用基于L1或L2的损失相似或更好的结果。我们还研究了通过FRC分析的神经网络去噪的性质和局限性。
translated by 谷歌翻译
视觉关注估计是不同学科的十字路口的一个积极的研究领域:计算机视觉,人工智能和医学。估计表示关注的显着图的最常见方法之一是基于观察到的图像。在本文中,我们表明可以从EEG采集中检索视觉注意力。结果与观察到的图像的传统预测相当,这具有很大的兴趣。为此目的,已经记录了一组信号,并且已经开发出不同的模型来研究视觉关注与大脑活动之间的关系。结果令人鼓舞,与其他方式的其他方法令人鼓舞,与其他方式相比。本文考虑的代码和数据集已在\ URL {https://figshare.com/s/3e353bd1c621962888AD}中提供,以促进该领域的研究。
translated by 谷歌翻译
在神经元网络中,使用本地信息单独更新,允许完全分散的学习。相反,人工神经网络(ANN)中的元件通常使用中央处理器同时更新。在这里,我们调查最近引入的分散,物理驱动的学习网络中异步学习的可行性和影响。我们表明,在理想化模拟中,Desynchization Learing Processe不会降低各种任务的性能。在实验中,Des同步实际上通过允许系统更好地探索解决方案的离散状态空间来实现性能。我们在随机梯度下降中的异步和迷你批处理之间绘制了类比,并表明它们对学习过程具有类似的影响。 des同步学习过程将物理驱动的学习网络建立为真正完全分布式的学习机器,在部署中提高更好的性能和可扩展性。
translated by 谷歌翻译