We present X-Decoder, a generalized decoding model that can predict pixel-level segmentation and language tokens seamlessly. X-Decodert takes as input two types of queries: (i) generic non-semantic queries and (ii) semantic queries induced from text inputs, to decode different pixel-level and token-level outputs in the same semantic space. With such a novel design, X-Decoder is the first work that provides a unified way to support all types of image segmentation and a variety of vision-language (VL) tasks. Further, our design enables seamless interactions across tasks at different granularities and brings mutual benefits by learning a common and rich pixel-level visual-semantic understanding space, without any pseudo-labeling. After pretraining on a mixed set of a limited amount of segmentation data and millions of image-text pairs, X-Decoder exhibits strong transferability to a wide range of downstream tasks in both zero-shot and finetuning settings. Notably, it achieves (1) state-of-the-art results on open-vocabulary segmentation and referring segmentation on eight datasets; (2) better or competitive finetuned performance to other generalist and specialist models on segmentation and VL tasks; and (3) flexibility for efficient finetuning and novel task composition (e.g., referring captioning and image editing). Code, demo, video, and visualization are available at https://x-decoder-vl.github.io.
translated by 谷歌翻译
We propose the Detailed Outline Control (DOC) framework for improving long-range plot coherence when automatically generating several-thousand-word-long stories. DOC consists of two complementary components: a detailed outliner and a detailed controller. The detailed outliner creates a more detailed, hierarchically structured outline, shifting creative burden from the main drafting procedure to the planning stage. The detailed controller ensures the more detailed outline is still respected during generation by controlling story passages to align with outline details. In human evaluations of automatically generated stories, DOC substantially outperforms a strong Re3 baseline (Yang et al., 2022) on plot coherence (22.5% absolute gain), outline relevance (28.2%), and interestingness (20.7%). Humans also judged DOC to be much more controllable in an interactive generation setting.
translated by 谷歌翻译
We present a robust methodology for evaluating biases in natural language generation(NLG) systems. Previous works use fixed hand-crafted prefix templates with mentions of various demographic groups to prompt models to generate continuations for bias analysis. These fixed prefix templates could themselves be specific in terms of styles or linguistic structures, which may lead to unreliable fairness conclusions that are not representative of the general trends from tone varying prompts. To study this problem, we paraphrase the prompts with different syntactic structures and use these to evaluate demographic bias in NLG systems. Our results suggest similar overall bias trends but some syntactic structures lead to contradictory conclusions compared to past works. We show that our methodology is more robust and that some syntactic structures prompt more toxic content while others could prompt less biased generation. This suggests the importance of not relying on a fixed syntactic structure and using tone-invariant prompts. Introducing syntactically-diverse prompts can achieve more robust NLG (bias) evaluation.
translated by 谷歌翻译
大型预训练的语言模型的最新进展表明,在生成自然语言以及许多自然语言生成(NLG)应用(例如机器翻译和文本摘要)的表现方面取得了良好的结果。但是,当一代任务更开放并且内容不足时,现有的技术难以生成长期连贯和创造性的内容。此外,这些模型表现出甚至扩大了从培训语料库中学到的社会偏见。之所以发生这种情况,是因为对生成模型进行了训练以捕获表面模式(即单词序列),而不是捕获基本的语义和话语结构以及包括社会规范在内的背景知识。在本文中,我介绍了有关可控文本生成的最新作品,以增强语言生成模型的创造力和公平性。我们探索层次结构的生成和限制解码,并应用于创意语言生成,包括故事,诗歌和象征性语言以及对生成模型的偏见缓解。
translated by 谷歌翻译
NECE是一个基于事件的文本分析工具包,用于叙事文档。NECE的目的是通过图形界面和Python软件包为用户提供开放且轻松地访问基于事件的摘要和长期叙事文档的抽象,这些软件包可以很容易地用于叙事分析,理解或其他高级目的。我们的工作解决了长期通过事件提取和关键事件的时间顺序的挑战;同时,它提供了选择和查看与叙述实体有关的事件(例如主要角色和性别群体)的选项。我们进行人类评估以证明事件链提取系统的质量,并且角色具有挖掘算法。最后,我们通过证明其在性别偏见分析和提问任务中的用法来阐明该工具包的潜在下游应用程序。
translated by 谷歌翻译
临床领域中的事件提取是一个探索较少的研究领域。除了大量的特定领域的行话外,缺乏培训数据,包括较长的实体,具有模糊的边界,使该任务尤其具有挑战性。在本文中,我们介绍了DICE,这是一种用于临床事件提取的强大而数据效率的生成模型。骰子框架事件提取作为有条件的生成问题,并利用域专家提供的描述来提高低资源设置下的性能。此外,DICE学会了与辅助提及的识别任务一起定位和约束生物医学提及,该任务与事件提取任务共同培训,以利用任务间的依赖性,并进一步纳入确定的提及作为其各自任务的触发和论证候选者。我们还介绍了MacCrobat-EE,这是第一个带有事件参数注释的临床事件提取数据集。我们的实验证明了在临床领域的低数据设置下骰子的鲁棒性,以及将柔性关节训练并提及标记纳入生成方法的好处。
translated by 谷歌翻译
视觉语言(VL)预训练最近受到了广泛的关注。但是,大多数现有的端到端预训练方法只旨在解决诸如图像文本检索,视觉询问答案(VQA)和图像字幕等VL任务,以测试对图像的高级了解,或者仅对目标区域进行测试 - 对诸如短语接地和对象检测等任务的水平理解。我们提出了Fiber(基于回避的变压器),这是一种新的VL模型体系结构,可以无缝处理这两种类型的任务。 Fiber没有将多模式融合到模型深处,而不是将融合后的专用变压器层用于融合,而是通过将交叉注意力插入图像和文本骨干杆中,从而在记忆和性能方面带来了增长。此外,与以前的工作不同,它要么仅在图像文本数据上进行训练,要么在带有框级注释的细粒度数据上进行培训,我们提出了一种两阶段的预训练策略,该策略有效地使用了这两种数据:(( i)基于图像文本数据的粗粒细化预训练;然后是(ii)基于图像文本框数据的细粒度预训练。我们对各种VL任务进行全面的实验,从VQA,图像字幕和检索到短语接地,参考表达理解和对象检测。使用深层多模式融合,结合两阶段的预训练,光纤可对所有任务的强基础进行一致的性能改进,通常使用幅度更优于更多数据的方法。代码可从https://github.com/microsoft/fiber获得。
translated by 谷歌翻译
新闻文章修订历史为新闻文章中的叙事和事实演变提供了线索。为了促进对这一进化的分析,我们介绍了新闻修订历史记录的第一个公开可用的数据集。我们的数据集是大规模和多语言的;它包含120万篇文章,其中有460万款来自三个国家 /地区的英语和法语报纸来源,涵盖了15年的报道(2006 - 2021年)。我们定义文章级的编辑操作:加法,删除,编辑和重构,并开发高准确性提取算法以识别这些动作。为了强调许多编辑操作的事实性质,我们进行的分析表明,添加和删除的句子更可能包含更新事件,主要内容和报价,而不是不变的句子。最后,为了探索编辑操作是否可以预测,我们介绍了三个旨在预测版本更新过程中执行的动作的新任务。我们表明,这些任务对于人类专业而言是可能的,但对于大型NLP模型而言,这些任务具有挑战性。我们希望这可以刺激叙事框架的研究,并为追逐突发新闻的记者提供预测工具。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
事实证明,演讲者的追随者模型在视觉和语言导航中有效,在该导航中,扬声器模型用于合成新的说明,以增强追随者导航模型的培训数据。但是,在以前的许多方法中,生成的指令未直接训练以优化追随者的性能。在本文中,我们介绍\ textsc {foam},a \ textsc {fo} llower- \ textsc {a} ware speaker \ textsc {m} odel,它不断更新给定关注的反馈,以便生成的指令可以是更多的指令。适合当前追随者的学习状态。具体而言,我们使用BI级优化框架优化了扬声器,并通过评估标记数据的跟随器来获得其训练信号。房间对房间和房间的室内数据集中的实验结果表明,我们的方法可以超越跨设置的强大基线模型。分析还表明,我们生成的指示的质量比基线更高。
translated by 谷歌翻译