强化学习中的固有问题是应对不确定要采取的行动(或状态价值)的政策。模型不确定性,更正式地称为认知不确定性,是指超出采样噪声的模型的预期预测误差。在本文中,我们提出了Q值函数中认知不确定性估计的度量,我们将其称为路线上的认知不确定性。我们进一步开发了一种计算其近似上限的方法,我们称之为f值。我们通过实验将后者应用于深Q-Networks(DQN),并表明增强学习中的不确定性估计是学习进步的有用指标。然后,我们提出了一种新的方法,通过从现有(以前学过的或硬编码)的甲骨文政策中学习不确定性的同时,旨在避免在训练过程中避免非生产性的随机操作,从而提高参与者批评算法的样本效率。我们认为这位评论家的信心指导了探索(CCGE)。我们使用我们的F-Value指标在软演奏者(SAC)上实施CCGE,我们将其应用于少数流行的健身环境,并表明它比有限的背景下的香草囊获得了更好的样本效率和全部情节奖励。
translated by 谷歌翻译