人类使用自然语言来撰写普通概念,将他们的环境归结为合理的日常场景描述。然而,这种生成的致辞推理(GCSR)技能缺乏最先进的文本生成方法。关于由神经文本生成模型(例如,预先接受的文本到文本变压器)生成的任意概念的描述性句子通常是语法流畅的,但可能与人类常识不相符,这主要是由于它们缺乏捕获概念关系的机制识别隐式概念,并对看不见的概念组成来执行概括的推理。在本文中,我们提出了一种想象的 - 言语(I&V)方法,其学会在输入概念之间的关系中想象一个关系场景知识图(SKG),并在生成合理的场景描述时利用SKG作为约束。我们收集和协调来自不同领域和方式的一套知识资源,为I&v提供丰富的辅助监督信号。该实验展示了I&V在提高概念到句子和概念到故事的生成任务上的语言模型的有效性,同时使模型能够从更少的任务示例中学习并生成对人类注入者常识的SKG。
translated by 谷歌翻译