诸如“玻璃可以用于饮用水”之类的先决条件的推理仍然是语言模型的开放问题。主要的挑战在于,前提数据的稀缺性以及模型对这种推理的缺乏支持。我们提出了粉红色的,预处理性的推论,并通过弱监督进行了改进的模型,用于通过最低限度的监督来推理前提条件。我们从经验和理论上表明,粉红色改善了基准的结果,该基准的重点是通过常识性知识的前提(高达40%的宏F1分数)进行推理。我们通过Pac-Bayesian信息分析,精确度量和消融研究进一步研究粉红色。
translated by 谷歌翻译
深度神经网络通常过度分辨,并且可能不容易实现模型泛化。对抗性训练通过规则地改变普遍选择的扰动之外的损失变化来提高普遍性的效果。最近提出的清晰度感知最小化(SAM)算法采用对抗性重量扰动,鼓励模型收敛于扁平最小值。遗憾的是,由于计算成本增加,对抗性重量扰动只能有效地近似于每批次而不是每个实例,导致性能下降。在本文中,我们提出了在每个批处理中动态重新缓解的扰动,其中揭开的实例被加权,可以用作每个实例扰动的更好近似。我们提出了充满活力的重新重量({\ Delta} -Sam)的清晰度感知最小化,这实现了高效的防护估计的想法。胶水基准测试的实验证明了{\ delta} -sam的有效性。
translated by 谷歌翻译
人类使用自然语言来撰写普通概念,将他们的环境归结为合理的日常场景描述。然而,这种生成的致辞推理(GCSR)技能缺乏最先进的文本生成方法。关于由神经文本生成模型(例如,预先接受的文本到文本变压器)生成的任意概念的描述性句子通常是语法流畅的,但可能与人类常识不相符,这主要是由于它们缺乏捕获概念关系的机制识别隐式概念,并对看不见的概念组成来执行概括的推理。在本文中,我们提出了一种想象的 - 言语(I&V)方法,其学会在输入概念之间的关系中想象一个关系场景知识图(SKG),并在生成合理的场景描述时利用SKG作为约束。我们收集和协调来自不同领域和方式的一套知识资源,为I&v提供丰富的辅助监督信号。该实验展示了I&V在提高概念到句子和概念到故事的生成任务上的语言模型的有效性,同时使模型能够从更少的任务示例中学习并生成对人类注入者常识的SKG。
translated by 谷歌翻译
表示标签分布作为一个热量矢量是培训节点分类模型中的常见做法。然而,单热表示可能无法充分反映不同类别中节点的语义特征,因为某些节点可以在其他类中的邻居语义上靠近其邻居。由于鼓励在对每个节点进行分类时,鼓励模型分配完全概率,因此会导致过度自信。虽然具有标签平滑的培训模型可以在某种程度上缓解此问题,但它仍然无法捕获图形结构隐含的节点的语义特征。在这项工作中,我们提出了一种新颖的SAL(\ Textit {Security-Aware标签平滑})方法作为流行节点分类模型的增强组件。 SAL利用图形结构来捕获连接节点之间的语义相关性并生成结构感知标签分配以替换原始的单热标签向量,从而改善节点分类性能而不推广成本。七节点分类基准数据集的广泛实验揭示了我们对改进转膜和归纳节点分类的含量的有效性。经验结果表明,SALS优于标签平滑方法,增强节点分类模型以优于基线方法。
translated by 谷歌翻译
语义细分是计算机视觉中的一个流行研究主题,并且在其上做出了许多努力,结果令人印象深刻。在本文中,我们打算搜索可以实时运行此问题的最佳网络结构。为了实现这一目标,我们共同搜索深度,通道,扩张速率和特征空间分辨率,从而导致搜索空间约为2.78*10^324可能的选择。为了处理如此大的搜索空间,我们利用差异架构搜索方法。但是,需要离散地使用使用现有差异方法搜索的体系结构参数,这会导致差异方法找到的架构参数与其离散版本作为体系结构搜索的最终解决方案之间的离散差距。因此,我们从解决方案空间正则化的创新角度来缓解离散差距的问题。具体而言,首先提出了新型的解决方案空间正则化(SSR)损失,以有效鼓励超级网络收敛到其离散。然后,提出了一种新的分层和渐进式解决方案空间缩小方法,以进一步实现较高的搜索效率。此外,我们从理论上表明,SSR损失的优化等同于L_0-NORM正则化,这说明了改善的搜索评估差距。综合实验表明,提出的搜索方案可以有效地找到最佳的网络结构,该结构具有较小的模型大小(1 m)的分割非常快的速度(175 fps),同时保持可比较的精度。
translated by 谷歌翻译
元学习在有限的监督数据中表现出了几次学习的巨大成功。在这些设置中,元模型通常被过度参数化。尽管常规的统计学习理论表明,过度参数化的模型倾向于过度合适,但经验证据表明,过度参数化的元学习方法仍然很好地工作 - 这种现象通常称为``良性过度拟合''。我们了解这种现象,我们专注于元学习设置,我们将具有挑战性的嵌套结构称为嵌套的元学习,并在过度参数化的元学习模型下分析其泛化性能。尽管我们的分析使用了相对可牵引的线性模型,但我们的理论有助于理解数据异质性,模型适应和良性过度适应嵌套元学习任务之间的微妙相互作用。我们通过数值模拟证实了我们的理论主张。
translated by 谷歌翻译
我们在本文中重新审视语义场景(SSC),是预测3D场景的语义和占用表示的有用任务。此任务的许多方法始终基于用于保存本地场景结构的体蛋白化场景表示。然而,由于存在可见空体素,当网络更深时,这些方法总是遭受重型计算冗余,从而限制完成质量。为了解决这种困境,我们提出了我们为此任务的新型点体素聚集网络。首先,我们通过去除这些可见的空体素来将Voxized场景传输到点云,并采用深点流,以有效地从场景中捕获语义信息。同时,仅包含两个3D卷积层的轻重体素流保留了体蛋白化场景的局部结构。此外,我们设计一个各向异性体素聚合运算符,将结构细节从体素流融合到点流中,并通过语义标签来增强点流中的上采样过程的语义感知传播模块。我们展示了我们的模型在两个基准上超越了最先进的余量,只有深度图像作为输入。
translated by 谷歌翻译
机械化新鲜市场水果的手工采伐构成了水果产业可持续性的最大挑战之一。在手动收获草莓和桌葡萄等新鲜市场作物时,拾取器花费大量的时间行走,将全托盘携带到领域边缘的收集站。增加对这种作物的收获自动化的一步是部署运输空和全托盘的收获辅助协作机器人(共用机器人),从而通过减少拾取器的非生产步行时间来增加收获效率。这项工作介绍了在商业草莓收获过程中开发合作机器收获援助系统及其评估。在系统的核心上,提示了一种预测随机调度算法,其最小化了预期的非拾取时间,从而最大化了收获效率。在评估实验期间,当机器人到拾取器的比例为1:3时,共同机器人将平均收获效率提高约10%并将平均非生产时间减少60%。在这项工作中开发的概念可以应用于机器人收获艾滋病,用于其他手动收获的作物,这些作物涉及用于行走的作物运输。
translated by 谷歌翻译
汤普森抽样(TS)吸引了对强盗区域的兴趣。它在20世纪30年代介绍,但近年来尚未经过理论上证明。其在组合多武装强盗(CMAB)设置中的所有分析都需要精确的Oracle来提供任何输入的最佳解决方案。然而,这种Oracle通常是不可行的,因为许多组合优化问题是NP - 硬,并且只有近似oracles可用。一个例子(王和陈,2018)已经表明TS的失败来学习近似Oracle。但是,此Oracle罕见,仅用于特定问题实例。它仍然是一个开放的问题,无论TS的收敛分析是否可以扩展到CMAB中的精确oracle。在本文中,我们在贪婪的Oracle下研究了这个问题,这是一个常见的(近似)Oracle,具有理论上的保证来解决许多(离线)组合优化问题。我们提供了一个问题依赖性遗憾的遗憾下限为$ \ omega(\ log t / delta ^ 2)$,以量化Ts的硬度来解决贪婪的甲骨文的CMAB问题,其中$ T $是时间范围和$ Delta $是一些奖励差距。我们还提供几乎匹配的遗憾上限。这些是TS解决CMAB与常见近似甲骨文的第一个理论结果,并打破TS无法使用近似神谕的误解。
translated by 谷歌翻译
考虑$ k $过程,每个过程都会生成一系列相同和独立的随机变量。这些过程的概率度量具有必须估计的随机参数。具体而言,它们共享一个参数$ \ theta $,所有概率度量共同。此外,每个过程$ i \ in \ {1,\ dots,k \} $都有一个私有参数$ \ alpha_i $。目的是设计一种主动采样算法,以顺序估算这些参数,以形成所有样品数量最少的共享和私有参数的可靠估计。该采样算法具有三个关键组件:(i)〜数据驱动的采样决策,随着时间的推移,该决策逐渐指定应选择哪些$ k $过程进行采样; (ii)〜停止该过程的时间,该过程指定何时累积数据足以形成可靠的估计并终止采样过程; (iii)〜所有共享和私人参数的估计器。由于已知的顺序估计在分析上是棘手的,因此本文采用\ emph {条件}估计成本函数,从而导致了顺序估计方法,该方法最近被证明可以进行拖延分析。划定了渐近的最佳决策规则(采样,停止和估计),并提供了数值实验,以将所提出的程序的疗效和质量与相关方法进行比较。
translated by 谷歌翻译